Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im richtigen Licht: Wie Zellen von der Sonne leben und sterben

17.08.2009
Schwergewichte der Forschung:
Über eine Viertel Million Euro für neues Projekt der Universität Hohenheim

Licht bedeutet Leben, im Übermaß kann es aber auch gefährlich werden. Der Ernährungsmediziner Prof. Dr. Tilman Grune von der Universität Hohenheim erforscht beide Kräfte des natürlichen Lichts: die positiven Einwirkungen der wärmenden Infrarotstrahlung auf das Zellwachstum und die Möglichkeit bösartige Tumorzellen durch Licht zu zerstören. Die Baseler Erwin-Braun-Stiftung fördert das Projekt mit 257.000 Euro.

Im Raum herrschen Rotlicht und Dunkelheit - wie in einem alten Schwarzweißlabor. Nur liegt unter dem Belichter kein Fotopapier, sondern eine Petrischale mit gezüchteten menschlichen Hautkulturen. Das Team von Prof. Grune erprobt an ihnen Licht unterschiedlicher Wellenlänge, Intensität und Leuchtdauer. Dann kommen die Kulturen wieder zurück in den Brutschrank. Nach einiger Zeit zeigt sich, welche Form von Licht den Zellkulturen nutzt und welche ihnen schadet.

Das ist einer der Versuchsaufbauten eines neuen herausragenden Drittmittelprojekts an der Universität Hohenheim. Sein Titel "Oxidativer Stress bei wassergefiltertem Infrarot A (wIRA) und Photodynamischer Therapie (PDT)". Die Förderung ermöglicht Prof. Dr. Grune für zwei Jahre, die Auswirkungen von Licht auf Überlebens- und Wachstumsparameter von Zellen in zwei Feldern zu erforschen.

Die heilende Wärme des Sonnenlichts

Zum einen geht es um die Wärmestrahlung der Sonne. "Tageslicht besteht aus einem ganzen Spektrum von Lichtarten", erklärt Prof. Dr. Grune. "Unumstritten ist mittlerweile die schädliche Wirkung des UV-Anteils. Er setzt in den Zellen sogennante Radikale frei. Einige von ihnen lösen oxidative Prozesse aus. Dieser Stress für die Zellen kann zu Hautkrebs führen. Andererseits ist der UV-Anteil der Sonnenstahlung dringend für die Vitamin D-Synthese notwendig."

Doch wie sieht es im Infrarot-Bereich aus? Er macht immerhin 50 Prozent des Sonnenlichts aus. Es wird vermutet, dass auch Wärmestrahlung Sonnenbrand erzeugen könnte. Einige Hersteller von Sonnenschutz mischen bereits Substanzen mit IR-A-Schutz in ihre Produkte. Doch Prof. Dr. Grune warnt vor Panik: "Wir dürfen uns nicht zu sehr vor der Sonne zurückziehen. Die heilsamen Bestandteile ihres Lichts sind nicht zu übersehen. Wir sind auf Licht angewiesen. Es sorgt nicht nur für Wellness und Wohlbefinden, sondern wird auch in der medizinischen Wärmebehandlung, gerade bei Hautkrankheiten oder Muskelschmerzen, erfolgreich eingesetzt. Wir untersuchen, wie das genau funktioniert."

So viel ist schon erforscht: Die Wirkung des Infrarotlichts beruht auf dessen Strahlung und Wärme. Es verändert den Blutdurchfluss vorteilhaft und verringert die Krankheitsanfälligkeit. Die genauen zellulären Effekte sind jedoch unklar. Prof. Dr. Grune sucht Antworten auf die Fragen: Wo in der Zelle entstehen Radikale, wie entstehen sie, wie dramatisch ist ihr Entstehen für den Körper? Ziel ist eine medizinisch richtige und optimale Versorgung mit Licht, gerade auch im Hinblick auf die technischen Möglichkeiten in der Herstellung neuer Lichtquellen.

Einsatz von Licht gegen Tumorzellen

Ob auch die zerstörerische Kraft des Lichts gezielt eingesetzt werden kann, untersucht Prof. Dr. Grune im zweiten Projektfeld: Die Photodynamischen Therapie (PDT). Es geht darum, lichtinduzierte Therapien, die z.B. bei Schuppenflechte schon erfolgreich sind, auf die Tumortherapie zu erweitern. Das Prinzip ist relativ einfach: Die Tumorzellen werden mit speziellen photosensibilisierenden Substanzen lichtempfindlich für sichtbares Licht gemacht. Dann ist kein hoch dosierter Laser mehr nötig, sondern fein dosiertes sichtbares Licht zerstört die Tumorzellen. Sie schützen sich jedoch mit eigenen Reparatursystemen. Diese lassen sich wiederum mit Hemmstoffen außer Kraft setzen.

Im Labor funktioniert das bereits: 95 Prozent bösartiger Zellen lassen sich so zerstören. "Fünf Prozent Restzellen - das ist für den aggressiven schwarzen Hautkrebs zu viel. Hier müssen wir eine 100%ige Vernichtung erreichen." Bisher erforschen Prof. Dr. Grune und sein Team, ein wissenschaftlicher Mitarbeiter, ein Doktorand und zwei Diplomanden, die grundsätzliche Wirkungsweise, experimentieren mit möglichen Substanzen - teils anorganischer Herkunft, teils organische Pilzextrakte - und unterschiedlichen Konzentrationen, verändern die Eigenschaften des Lichts und setzen unterschiedliche Lichtdosierungen ein.

"Unser Fernziel: Der Patient bekommt ein Präparat aus Photo-Sensitizern und Hemmstoffen verabreicht. Es wird vom Körper aufgenommen und reichert sich in den Krebszellen an. Das richtige Licht tötet die Zellen ab, und die Substanzen werden so schnell vom Körper wieder ausgeschieden, dass sie ihm nicht mehr schaden können", sagt Prof. Dr. Grune.

Hintergrund: Schwergewichte der Forschung

Rund 26 Millionen Euro an Drittmitteln akquirierten Forscher der Universität Hohenheim allein im vergangenen Jahr - gut 20 % mehr als im Jahr davor. In loser Folge präsentiert Ihnen die Reihe "Schwergewichte der Forschung" herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens einer Viertelmillion Euro, bzw. 125.000 Euro in den Wirtschafts- und Geisteswissenschaften.

Ansprechperson:
Prof. Dr. med. Tilman Grune, Fg. Biofunktionalität und Sicherheit der Lebensmittel

Tel.: 0711 459-24060, grune@uni-hohenheim.de

Text: Töpfer / Klebs

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie