Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im richtigen Licht: Wie Zellen von der Sonne leben und sterben

17.08.2009
Schwergewichte der Forschung:
Über eine Viertel Million Euro für neues Projekt der Universität Hohenheim

Licht bedeutet Leben, im Übermaß kann es aber auch gefährlich werden. Der Ernährungsmediziner Prof. Dr. Tilman Grune von der Universität Hohenheim erforscht beide Kräfte des natürlichen Lichts: die positiven Einwirkungen der wärmenden Infrarotstrahlung auf das Zellwachstum und die Möglichkeit bösartige Tumorzellen durch Licht zu zerstören. Die Baseler Erwin-Braun-Stiftung fördert das Projekt mit 257.000 Euro.

Im Raum herrschen Rotlicht und Dunkelheit - wie in einem alten Schwarzweißlabor. Nur liegt unter dem Belichter kein Fotopapier, sondern eine Petrischale mit gezüchteten menschlichen Hautkulturen. Das Team von Prof. Grune erprobt an ihnen Licht unterschiedlicher Wellenlänge, Intensität und Leuchtdauer. Dann kommen die Kulturen wieder zurück in den Brutschrank. Nach einiger Zeit zeigt sich, welche Form von Licht den Zellkulturen nutzt und welche ihnen schadet.

Das ist einer der Versuchsaufbauten eines neuen herausragenden Drittmittelprojekts an der Universität Hohenheim. Sein Titel "Oxidativer Stress bei wassergefiltertem Infrarot A (wIRA) und Photodynamischer Therapie (PDT)". Die Förderung ermöglicht Prof. Dr. Grune für zwei Jahre, die Auswirkungen von Licht auf Überlebens- und Wachstumsparameter von Zellen in zwei Feldern zu erforschen.

Die heilende Wärme des Sonnenlichts

Zum einen geht es um die Wärmestrahlung der Sonne. "Tageslicht besteht aus einem ganzen Spektrum von Lichtarten", erklärt Prof. Dr. Grune. "Unumstritten ist mittlerweile die schädliche Wirkung des UV-Anteils. Er setzt in den Zellen sogennante Radikale frei. Einige von ihnen lösen oxidative Prozesse aus. Dieser Stress für die Zellen kann zu Hautkrebs führen. Andererseits ist der UV-Anteil der Sonnenstahlung dringend für die Vitamin D-Synthese notwendig."

Doch wie sieht es im Infrarot-Bereich aus? Er macht immerhin 50 Prozent des Sonnenlichts aus. Es wird vermutet, dass auch Wärmestrahlung Sonnenbrand erzeugen könnte. Einige Hersteller von Sonnenschutz mischen bereits Substanzen mit IR-A-Schutz in ihre Produkte. Doch Prof. Dr. Grune warnt vor Panik: "Wir dürfen uns nicht zu sehr vor der Sonne zurückziehen. Die heilsamen Bestandteile ihres Lichts sind nicht zu übersehen. Wir sind auf Licht angewiesen. Es sorgt nicht nur für Wellness und Wohlbefinden, sondern wird auch in der medizinischen Wärmebehandlung, gerade bei Hautkrankheiten oder Muskelschmerzen, erfolgreich eingesetzt. Wir untersuchen, wie das genau funktioniert."

So viel ist schon erforscht: Die Wirkung des Infrarotlichts beruht auf dessen Strahlung und Wärme. Es verändert den Blutdurchfluss vorteilhaft und verringert die Krankheitsanfälligkeit. Die genauen zellulären Effekte sind jedoch unklar. Prof. Dr. Grune sucht Antworten auf die Fragen: Wo in der Zelle entstehen Radikale, wie entstehen sie, wie dramatisch ist ihr Entstehen für den Körper? Ziel ist eine medizinisch richtige und optimale Versorgung mit Licht, gerade auch im Hinblick auf die technischen Möglichkeiten in der Herstellung neuer Lichtquellen.

Einsatz von Licht gegen Tumorzellen

Ob auch die zerstörerische Kraft des Lichts gezielt eingesetzt werden kann, untersucht Prof. Dr. Grune im zweiten Projektfeld: Die Photodynamischen Therapie (PDT). Es geht darum, lichtinduzierte Therapien, die z.B. bei Schuppenflechte schon erfolgreich sind, auf die Tumortherapie zu erweitern. Das Prinzip ist relativ einfach: Die Tumorzellen werden mit speziellen photosensibilisierenden Substanzen lichtempfindlich für sichtbares Licht gemacht. Dann ist kein hoch dosierter Laser mehr nötig, sondern fein dosiertes sichtbares Licht zerstört die Tumorzellen. Sie schützen sich jedoch mit eigenen Reparatursystemen. Diese lassen sich wiederum mit Hemmstoffen außer Kraft setzen.

Im Labor funktioniert das bereits: 95 Prozent bösartiger Zellen lassen sich so zerstören. "Fünf Prozent Restzellen - das ist für den aggressiven schwarzen Hautkrebs zu viel. Hier müssen wir eine 100%ige Vernichtung erreichen." Bisher erforschen Prof. Dr. Grune und sein Team, ein wissenschaftlicher Mitarbeiter, ein Doktorand und zwei Diplomanden, die grundsätzliche Wirkungsweise, experimentieren mit möglichen Substanzen - teils anorganischer Herkunft, teils organische Pilzextrakte - und unterschiedlichen Konzentrationen, verändern die Eigenschaften des Lichts und setzen unterschiedliche Lichtdosierungen ein.

"Unser Fernziel: Der Patient bekommt ein Präparat aus Photo-Sensitizern und Hemmstoffen verabreicht. Es wird vom Körper aufgenommen und reichert sich in den Krebszellen an. Das richtige Licht tötet die Zellen ab, und die Substanzen werden so schnell vom Körper wieder ausgeschieden, dass sie ihm nicht mehr schaden können", sagt Prof. Dr. Grune.

Hintergrund: Schwergewichte der Forschung

Rund 26 Millionen Euro an Drittmitteln akquirierten Forscher der Universität Hohenheim allein im vergangenen Jahr - gut 20 % mehr als im Jahr davor. In loser Folge präsentiert Ihnen die Reihe "Schwergewichte der Forschung" herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens einer Viertelmillion Euro, bzw. 125.000 Euro in den Wirtschafts- und Geisteswissenschaften.

Ansprechperson:
Prof. Dr. med. Tilman Grune, Fg. Biofunktionalität und Sicherheit der Lebensmittel

Tel.: 0711 459-24060, grune@uni-hohenheim.de

Text: Töpfer / Klebs

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik