Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der richtige Blick für Spiegelmoleküle

23.05.2013
Eine neue Methode kann links- und rechtshändige Moleküle zuverlässig unterscheiden

Die Chemie des Lebens kennt rechtshändige und linkshändige Moleküle, die ganz unterschiedliche Wirkung haben können. Ein amerikanisch-deutsches Forscherteam hat jetzt eine neue Technik entwickelt, mit der sich diese beiden spiegelbildlichen Varianten eines Stoffs zuverlässig auseinanderhalten lassen.



Handverlesene Moleküle: Mit Mikrowellen lassen sich Enantiomere, hier die beiden Varianten von 1,2 Propandiol, unterscheiden. Enantiomere besitzen dieselbe chemische Struktur, verhalten sich aber wie die linke und rechte Hand spiegelbildlich zueinander.
© Melanie Schnell/CFEL

Die Methode erkennt die sogenannten Enantiomere einer Verbindung im Prinzip sogar in Stoffgemischen. Die Technik habe zudem das Potenzial, die Enantiomere eines Stoffs nicht nur zu unterscheiden, sondern auch zu trennen, berichtet das Entwicklerteam, zu dem auch Melanie Schnell vom Hamburger Center for Free-Electron Laser Science (CFEL) gehört. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg.

Zahlreiche chemische Verbindungen kommen in zwei Varianten vor, die aus denselben Zutaten bestehen, sich aber zueinander verhalten wie Original und Spiegelbild. In Anlehnung an die linke und rechte Hand, die ebenfalls spiegelbildlich geformt sind, heißen solche Stoffe chiral, vom griechischen Wort cheiros für Hand. „Die Unterscheidung beider Varianten einer chiralen Verbindung gehört zu den schwierigsten und gleichzeitig wichtigsten Aufgaben in der analytischen Chemie", betont David Patterson von der US-amerikanischen Harvard-Universität. In der Biologie, aber auch bei zahlreichen chemischen Reaktionen, spielt die Chiralität (Händigkeit) eines Moleküls eine entscheidende Rolle. So baut die Chemie des Lebens fast ausschließlich auf linkshändige Aminosäuren und rechtshändige Zuckermoleküle. Warum das so ist, und wie die Natur dies erreicht, ist weitgehend ungeklärt.

In der chemischen Synthese entstehen häufig beide Varianten (Enantiomere) solcher Stoffe in derselben Menge. „Die falsche Sorte einer Verbindung kann im Organismus jedoch ganz anders wirken", erläutert Melanie Schnell. Die Wissenschaftlerin des Heidelberger Max-Planck-Instituts für Kernphysik leitet am CFEL eine unabhängige Max-Planck-Forschungsgruppe zur Erkundung von Struktur und Dynamik von Molekülen. „Im besten Fall ist sie dann unwirksam, im schlimmsten Fall sogar giftig." Insbesondere für die Pharmaindustrie ist die Herstellung reiner Enantiomere daher von großem Interesse, und es existieren bereits einige Verfahren zur gezielten Synthese oder nachträglichen Anreicherung von Enantiomeren mancher Wirkstoffe.

Enantiomere lassen sich mithilfe ihres Dipolmomentes unterscheiden

Schon die beiden Varianten auseinanderzuhalten, ist jedoch keine leichte Aufgabe – sie gleichen sich in fast allen physikalischen Eigenschaften. Am einfachsten verraten sich reine Enantiomere durch ihre Wirkung auf linear polarisiertes Licht, also auf Lichtwellen, die alle in derselben Ebene schwingen. Die eine Variante eines chiralen Moleküls dreht diese Schwingungsebene nach links, die andere nach rechts. Allerdings sind diese Effekte insbesondere bei Enantiomergemischen und bei Stoffgemischen mit mehreren Verbindungen klein, und die Enantiomere müssen für diese Untersuchung in der Regel flüssig vorliegen.

Das Team um David Patterson hat nun eine Methode entwickelt, die eine andere Eigenschaft der Enantiomere unterscheidet, das sogenannte Dipolmoment. Es beschreibt die Wechselwirkung eines Moleküls mit einem externen elektrischen Feld. Zwar sind die Dipolmomente beider Enantiomere vom Betrag her stets gleich, sie unterscheiden sich wegen des spiegelbildlichen Aufbaus jedoch in der Orientierung ihrer einzelnen Komponenten entlang der drei Raumrichtungen. Das nutzen die Forscher mit einer Apparatur aus, bei der sie die Wechselwirkung der Moleküle mit Mikrowellenstrahlung messen.

Die zu testenden Stoffe müssen dafür als Gas vorliegen, was bei vielen sowohl industriell verwendeten als auch biologisch relevanten Verbindungen möglich ist. Das Gas wird in eine Kältekammer geschleust und auf minus 266 Grad Celsius gekühlt. Dort wird es in ein elektrisches Feld gebracht und anschließend mit Mikrowellen einer bestimmten Wellenlänge bestrahlt, mit denen die Moleküle zu Rotationen angeregt werden. Durch die Rotationen senden die Moleküle wiederum eigene Strahlung aus, die sich messen lässt. Die sogenannte Phase dieser Strahlung verrät den Enantiomertyp – wenn die abgestrahlte elektromagnetische Welle bei linkshändigen Molekülen zu einem bestimmten Zeitpunkt gerade das positive Maximum erreicht hat, besitzt sie bei rechtshändigen Molekülen zur selben Zeit das negative Maximum, beide Wellen sind also gegenläufig.

Mit einer Weiterentwicklung der Methode könnten sich Enantiomere trennen lassen

Die Forscher testeten ihr Verfahren mit 1,2-Propandiol, einer organischen Verbindung, deren Eigenschaften sehr gut vermessen sind, und die sich als reine rechts- und linkshändige Enantiomere kaufen lässt. Die Methode konnte nicht nur die beiden Enantiomere klar auseinander halten, sondern auch ihr Mischungsverhältnis in Enantiomergemischen bestimmen.

Die Mikrowellenfrequenz kann dabei sehr fein abgestimmt werden, um nur die gewünschte Rotation bei den Molekülen eines bestimmten Stoffs anzuregen. So lassen sich prinzipiell auch Stoffgemische untersuchen. „Wir können künftig Mischungen von verschiedenen Molekülen messen und bekommen die Anteile ihrer Enantiomere", sagt Max-Planck-Forscherin Schnell. Entsprechend planen die Wissenschaftler in einem nächsten Schritt, die Technik auf ein sogenanntes Breitbandspektrometer auszuweiten, das sich am Hamburger CFEL befindet und mit dem sich dann Stoffgemische auf ihre Enantiomeranteile analysieren lassen.

„Darüber hinaus bietet das Verfahren die Perspektive, daraus eine Methode zur Trennung von Enantiomeren zu entwickeln", erläutert John Doyle. Dazu ließe sich ein Enantiomer möglicherweise gezielt mit einem Laser anregen und mit einem weiteren Laserblitz, der auf entsprechend angeregte Moleküle anders wirkt als auf nicht angeregte, vom anderen Enantiomer trennen. Ein solches Verfahren habe typischerweise zwar nur einen geringen Wirkungsgrad, durch die schnelle Wiederholung ließe sich jedoch rasch ein lohnender Enantiomerüberschuss ansammeln, schätzen die Wissenschaftler.

Ansprechpartner
Dr. Melanie Schnell
Center for Free-Electron Laser Science
Telefon: +49 40 8998-6240
E-Mail: melanie.schnell@­desy.de
Prof. John Doyle
Harvard University, Cambridge, MA, USA
Telefon: +1 617 495-3201
E-Mail: doyle@­physics.harvard.edu
Originalpublikation
David Patterson, Melanie Schnell und John M. Doyle
Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy
Nature, 23. Mai 2013; DOI: 10.1038/nature12150

Dr. Melanie Schnell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/7261551/enantiomere_trennung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten