Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der richtige Blick für Spiegelmoleküle

23.05.2013
Eine neue Methode kann links- und rechtshändige Moleküle zuverlässig unterscheiden

Die Chemie des Lebens kennt rechtshändige und linkshändige Moleküle, die ganz unterschiedliche Wirkung haben können. Ein amerikanisch-deutsches Forscherteam hat jetzt eine neue Technik entwickelt, mit der sich diese beiden spiegelbildlichen Varianten eines Stoffs zuverlässig auseinanderhalten lassen.



Handverlesene Moleküle: Mit Mikrowellen lassen sich Enantiomere, hier die beiden Varianten von 1,2 Propandiol, unterscheiden. Enantiomere besitzen dieselbe chemische Struktur, verhalten sich aber wie die linke und rechte Hand spiegelbildlich zueinander.
© Melanie Schnell/CFEL

Die Methode erkennt die sogenannten Enantiomere einer Verbindung im Prinzip sogar in Stoffgemischen. Die Technik habe zudem das Potenzial, die Enantiomere eines Stoffs nicht nur zu unterscheiden, sondern auch zu trennen, berichtet das Entwicklerteam, zu dem auch Melanie Schnell vom Hamburger Center for Free-Electron Laser Science (CFEL) gehört. Das CFEL ist eine Kooperation von DESY, der Max-Planck-Gesellschaft und der Universität Hamburg.

Zahlreiche chemische Verbindungen kommen in zwei Varianten vor, die aus denselben Zutaten bestehen, sich aber zueinander verhalten wie Original und Spiegelbild. In Anlehnung an die linke und rechte Hand, die ebenfalls spiegelbildlich geformt sind, heißen solche Stoffe chiral, vom griechischen Wort cheiros für Hand. „Die Unterscheidung beider Varianten einer chiralen Verbindung gehört zu den schwierigsten und gleichzeitig wichtigsten Aufgaben in der analytischen Chemie", betont David Patterson von der US-amerikanischen Harvard-Universität. In der Biologie, aber auch bei zahlreichen chemischen Reaktionen, spielt die Chiralität (Händigkeit) eines Moleküls eine entscheidende Rolle. So baut die Chemie des Lebens fast ausschließlich auf linkshändige Aminosäuren und rechtshändige Zuckermoleküle. Warum das so ist, und wie die Natur dies erreicht, ist weitgehend ungeklärt.

In der chemischen Synthese entstehen häufig beide Varianten (Enantiomere) solcher Stoffe in derselben Menge. „Die falsche Sorte einer Verbindung kann im Organismus jedoch ganz anders wirken", erläutert Melanie Schnell. Die Wissenschaftlerin des Heidelberger Max-Planck-Instituts für Kernphysik leitet am CFEL eine unabhängige Max-Planck-Forschungsgruppe zur Erkundung von Struktur und Dynamik von Molekülen. „Im besten Fall ist sie dann unwirksam, im schlimmsten Fall sogar giftig." Insbesondere für die Pharmaindustrie ist die Herstellung reiner Enantiomere daher von großem Interesse, und es existieren bereits einige Verfahren zur gezielten Synthese oder nachträglichen Anreicherung von Enantiomeren mancher Wirkstoffe.

Enantiomere lassen sich mithilfe ihres Dipolmomentes unterscheiden

Schon die beiden Varianten auseinanderzuhalten, ist jedoch keine leichte Aufgabe – sie gleichen sich in fast allen physikalischen Eigenschaften. Am einfachsten verraten sich reine Enantiomere durch ihre Wirkung auf linear polarisiertes Licht, also auf Lichtwellen, die alle in derselben Ebene schwingen. Die eine Variante eines chiralen Moleküls dreht diese Schwingungsebene nach links, die andere nach rechts. Allerdings sind diese Effekte insbesondere bei Enantiomergemischen und bei Stoffgemischen mit mehreren Verbindungen klein, und die Enantiomere müssen für diese Untersuchung in der Regel flüssig vorliegen.

Das Team um David Patterson hat nun eine Methode entwickelt, die eine andere Eigenschaft der Enantiomere unterscheidet, das sogenannte Dipolmoment. Es beschreibt die Wechselwirkung eines Moleküls mit einem externen elektrischen Feld. Zwar sind die Dipolmomente beider Enantiomere vom Betrag her stets gleich, sie unterscheiden sich wegen des spiegelbildlichen Aufbaus jedoch in der Orientierung ihrer einzelnen Komponenten entlang der drei Raumrichtungen. Das nutzen die Forscher mit einer Apparatur aus, bei der sie die Wechselwirkung der Moleküle mit Mikrowellenstrahlung messen.

Die zu testenden Stoffe müssen dafür als Gas vorliegen, was bei vielen sowohl industriell verwendeten als auch biologisch relevanten Verbindungen möglich ist. Das Gas wird in eine Kältekammer geschleust und auf minus 266 Grad Celsius gekühlt. Dort wird es in ein elektrisches Feld gebracht und anschließend mit Mikrowellen einer bestimmten Wellenlänge bestrahlt, mit denen die Moleküle zu Rotationen angeregt werden. Durch die Rotationen senden die Moleküle wiederum eigene Strahlung aus, die sich messen lässt. Die sogenannte Phase dieser Strahlung verrät den Enantiomertyp – wenn die abgestrahlte elektromagnetische Welle bei linkshändigen Molekülen zu einem bestimmten Zeitpunkt gerade das positive Maximum erreicht hat, besitzt sie bei rechtshändigen Molekülen zur selben Zeit das negative Maximum, beide Wellen sind also gegenläufig.

Mit einer Weiterentwicklung der Methode könnten sich Enantiomere trennen lassen

Die Forscher testeten ihr Verfahren mit 1,2-Propandiol, einer organischen Verbindung, deren Eigenschaften sehr gut vermessen sind, und die sich als reine rechts- und linkshändige Enantiomere kaufen lässt. Die Methode konnte nicht nur die beiden Enantiomere klar auseinander halten, sondern auch ihr Mischungsverhältnis in Enantiomergemischen bestimmen.

Die Mikrowellenfrequenz kann dabei sehr fein abgestimmt werden, um nur die gewünschte Rotation bei den Molekülen eines bestimmten Stoffs anzuregen. So lassen sich prinzipiell auch Stoffgemische untersuchen. „Wir können künftig Mischungen von verschiedenen Molekülen messen und bekommen die Anteile ihrer Enantiomere", sagt Max-Planck-Forscherin Schnell. Entsprechend planen die Wissenschaftler in einem nächsten Schritt, die Technik auf ein sogenanntes Breitbandspektrometer auszuweiten, das sich am Hamburger CFEL befindet und mit dem sich dann Stoffgemische auf ihre Enantiomeranteile analysieren lassen.

„Darüber hinaus bietet das Verfahren die Perspektive, daraus eine Methode zur Trennung von Enantiomeren zu entwickeln", erläutert John Doyle. Dazu ließe sich ein Enantiomer möglicherweise gezielt mit einem Laser anregen und mit einem weiteren Laserblitz, der auf entsprechend angeregte Moleküle anders wirkt als auf nicht angeregte, vom anderen Enantiomer trennen. Ein solches Verfahren habe typischerweise zwar nur einen geringen Wirkungsgrad, durch die schnelle Wiederholung ließe sich jedoch rasch ein lohnender Enantiomerüberschuss ansammeln, schätzen die Wissenschaftler.

Ansprechpartner
Dr. Melanie Schnell
Center for Free-Electron Laser Science
Telefon: +49 40 8998-6240
E-Mail: melanie.schnell@­desy.de
Prof. John Doyle
Harvard University, Cambridge, MA, USA
Telefon: +1 617 495-3201
E-Mail: doyle@­physics.harvard.edu
Originalpublikation
David Patterson, Melanie Schnell und John M. Doyle
Enantiomer-Specific Detection of Chiral Molecules via Microwave Spectroscopy
Nature, 23. Mai 2013; DOI: 10.1038/nature12150

Dr. Melanie Schnell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/7261551/enantiomere_trennung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie