Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ribosomen aktivieren Zellwachstum - und Krebs

04.03.2011
Der Proteinkomplex mTORC2 (Target of Rapamycin Complex) in Säugetieren hat eine zentrale Kontrollfunktion für das Zellwachstum und wird durch direkte Interaktion mit einem Ribosom aktiviert.

Die Hauptfunktion der Ribosomen in der Zelle ist die Proteinbiosythese, kurz die Herstellung von Proteinen. Dass Ribosomen durch eine Aktivierung des Proteinkomplexes mTORC2 auch eine zentrale Rolle in Signalwegen des Zellwachstums und damit bei der Entstehung von Krebs spielen, hat die Forschungsgruppe von Prof. Mike Hall am Biozentrum der Universität Basel nun erstmals nachgewiesen. Die Ergebnisse sind jetzt im US-Journal Cell veröffentlicht.

TOR (Target of Rapamycin) ist ein zentrales Steuerungselement für das Zellwachstum und spielt damit eine entscheidende Rolle für die Entwicklung und Alterung eines Lebewesens. TOR kommt in allen Eukaryonten – von der Hefe bis zum Menschen – vor. Es ist in der Zelle Bestandteil von zwei grösseren Proteinkomplexen, TORC1 und TORC2 (mTORC1 und mTORC2 in Säugetieren), die sich in ihrer Struktur und Funktion unterscheiden. Aktivierte Komplexe mTORC1 und mTORC2 führen zu Zellwachstum, in der Regel von gesunden, manchmal jedoch auch von Krebszellen.

Man wusste bereits, dass der Proteinkomplex mTORC1 durch verschiedene Wachstumsfaktoren, Nährstoffe sowie den Energiestatus der Zelle aktiviert wird und kannte die zugehörigen Mechanismen. Über die Regulierung von mTORC2 hingegen konnte man bisher nur sagen, dass die Aktivierung des Komplexes ausschliesslich über Wachstumsfaktoren erfolgt. Wie das genau geschieht, war nicht bekannt. Die Erforschung des Mechanismus zur Aktivierung des mTORC2-Signalweges in gesunden oder Krebszellen ist daher eine zentrale Fragestellung für Halls Forschungsgruppe.

Ribosomen aktivieren mTORC2
Das Ribosom als Bestandteil aller Zellen in jedem Lebewesen ist bekannt als „Maschine“ zur Herstellung von Proteinen. Nun sind Ribosomen von Halls Forschungsgruppe als Aktivatoren von mTORC2 identifiziert worden: Die direkte Interaktion zwischen Ribosom und mTORC2 in einer Zelle führt zur Aktivierung des Proteinkomplexes und damit zu Zellwachstum, in gesunden oder auch in Krebszellen. Diese Interaktion wird durch den Botenstoff PI3K stimuliert. Da die Ribosomenkonzentration die Rate der Proteinbiosynthese und damit die Wachstumsfähigkeit einer Zelle bestimmt, wird mTORC2 nur in wachstumsfähigen Zellen aktiviert. So ist im Umkehrschluss sichergestellt, dass bei geringer Ribosomenkonzentration mTORC2 inaktiv bleibt und nicht in der Lage ist, zu einem ungeeigneten Zeitpunkt das Zellwachstum anzuregen. Auf diese Weise wird mTORC2 durch die Wachstumsfähigkeit der Zelle reguliert.

Halls Forschungsgruppe hat diesen Regulationsprozess im Zuge eines genetischen Screenings bei Hefezellen entdeckt und kann die neuen Erkenntnisse auch in Säugetierzellen nachweisen. Dies ist nur möglich, weil TOR und seine Regulierung in Laufe der Evolution stark konserviert worden sind, da sie bei allen Eukaryonten eine lebenswichtige Rolle spielen.

TOR-Signalwege wichtig für Therapie von Krebs
Da die Entwicklung verschiedener Krankheiten wie Krebs, Herz-Kreislauf-Erkrankungen, Diabetes oder Adipositas mit Störungen des TOR-Signalweges in Verbindung stehen, sind Halls Forschungsergebnisse von grosser medizinischer Bedeutung. Für zukünftige Therapieansätze könnte ein medikamentöser Eingriff in die TORC2-Ribosomen-Interaktion ein vielversprechender Ansatzpunkt für die Behandlung dieser Krankheiten sein.

Prof. Hall entdeckte in den 1990er Jahren mit seiner Forschungsgruppe das Protein TOR und beschrieb dessen Rolle als zentrales Kontrollelement für das Zellwachstum. 2002 entdeckte er zudem die beiden TOR-Proteinkomplexe. Halls Gruppe erforscht derzeit, wie genau die Interaktion zwischen Ribosom und TORC2 in der Zelle abläuft und welche Rolle TORC1 und TORC2 bei der Entstehung schwerwiegender Krankheiten spielen.

Originalbeitrag
Vittoria Zinzalla, Daniele Stracka, Wolfgang Oppliger, and Michael N. Hall
Activation of mTORC2 by Association with the Ribosome
CELL, Journal, Volume 144, Issue 5, DOI: 10.1016/j.cell.2011.02.014
Weitere Auskünfte
Prof. Dr. Michael Hall, Biozentrum der Universität Basel, Wachstum und Entwicklung, Klingelbergstrasse 50/70, 4056 Basel, Tel. +41 61 267 21 50, E-Mail: m.hall@unibas.ch

Heike Sacher, Public Relations, Departement Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Tel. +41 61 267 14 49, E-Mail heike.sacher@unibas.ch

Heike Sacher | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein Holodeck für Fliegen, Fische und Mäuse
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Wie Pflanzen ihr Gedächtnis vererben
21.08.2017 | Gregor Mendel Institut für Molekulare Pflanzenbiologie (GMI)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik