Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rhizobien-Symbiose beeinflusst Bakteriengemeinschaft in Pflanzenwurzeln

15.11.2016

Wenn Knöllchenbakterien Pflanzen mit atmosphärischem Stickstoff versorgen, etablieren sich auch charakteristische mikrobielle Lebensgemeinschaften in der Wurzel, die das Pflanzenwachstum befeuern.

Manche Pflanzen können ihren Stickstoffbedarf aus der Atmosphäre decken. Sie nutzen dafür Bakterien in ihren Wurzeln, mit denen sie in Symbiose leben. Die Arbeitsgruppe von Paul Schulze-Lefert am Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln und Simona Radutoiu von der Universität Aarhus in Dänemark haben die mikrobiellen Lebensgemeinschaften im Umfeld dieser Wurzel-Symbiose untersucht.


Lichtmikroskopische Aufnahme der Wurzel von Lotus japonicus. Sie ist mit dem natürlichen Symbiont Mesorhizobium loti befallen.

MPI for Pflanzenzüchtungsforschung

Sie haben herausgefunden, dass das Fehlen der Rhizobien-Symbiose zu drastischen Änderungen bei der Zusammensetzung der mikrobiellen Lebensgemeinschaften in der Wurzel führt. Diese Veränderungen sind auch unter Bedingungen stabil, unter denen gar keine Knöllchen mehr gebildet werden, weil die Pflanze genügend gebundenen Stickstoff aus dem Boden bezieht.

Offensichtlich bewirkt allein die Genausstattung der Wirtspflanze für eine funktionierende Symbiose, dass sich in den Knöllchen, der Wurzel und der Umgebung der Wurzel außerordentlich stabile und charakteristische mikrobielle Lebensgemeinschaften ausbilden. Das bedeutet aber auch, dass die Erbanlagen der Pflanze einen direkten Einfluss auf die Zusammensetzung der Mikrobiome haben müssen.

Alle Pflanzen brauchen Stickstoff für ihr Wachstum, allerdings können sie keinen Stickstoff aus der Luft verwerten. Sie können ihn nur als gebundenen Stickstoff in Form von Nitrat- oder Ammonium-Ionen nutzen, die sie entweder aus der Erde beziehen oder aus dem stickstoffhaltigen Mineraldünger, der den landwirtschaftlichen Flächen zugesetzt wird.

Eine Pflanzenfamilie, die sogenannten Hülsenfrüchtler, hat allerdings die Fähigkeit entwickelt, Stickstoff aus einer symbiotischen Beziehung mit einem natürlichen Bodenbakterium zu beziehen. Für dessen Unterbringung richtet sie eigens spezialisierte Wurzelorgane ein, sogenannte Knöllchen. Dort wandelt das Bodenbakterium, das als Knöllchenbakterium oder Rhizobium bezeichnet wird, atmosphärischen Stickstoff in stickstoffhaltige Verbindungen um, die die Pflanze dann nutzt.

Als Modellpflanze benutzten Schulze-Lefert, Radutoi und ihre Kollegen Rafal Zgadzaj und Ruben Garrido-Oter eine in Japan beheimatete Form des Hornklees und machten beim Wildtyp und vier Mutanten Inventur in den zugehörigen Mikrobiomen.

„Wir konnten zeigen, dass mit dem Verlust der Symbiose mindestens sechs verschiedene bakterielle Ordnungen fast nicht mehr in der Wurzel nachweisbar sind“, erklärt Garrido-Oter. „Stattdessen führt der Verlust der Symbiose dazu, dass sich achtmal so viele bakterielle Ordnungen in der Rhizosphäre, also außerhalb der Wurzel, ansammeln. Anscheinend erhalten diese Bakterien keine molekulare Eintrittskarte mehr“, so Garrido-Oter weiter.

Welches mit der Symbiose verbundene Signal als molekulare Eintrittskarte dient, wissen die Wissenschaftler derzeit noch nicht, aber die massiven und stabilen Änderungen beim Mikrobiom sind offensichtlich eine direkte Konsequenz der nicht mehr funktionierenden Symbiose. Die Wissenschaftler konnten des Weiteren zeigen, dass Knöllchen und Wurzeln nicht nacheinander besiedelt werden, sondern gleichzeitig. Die Bakterien wandern also nicht von einem Bereich zum anderen, sondern suchen die Wurzel und die Knöllchen gezielt und ohne Umwege auf.

Die Wissenschaftler um Schulze-Lefert und Radutoiu haben zwei mögliche Erklärungen für diese Ergebnisse. Es könnte sein, dass die Rhizobien im Zuge der Symbiose mit einem ganzen Tross an befreundeten Helfer-Bakterien in die Wurzel und die Knöllchen einziehen. Es könnte aber auch sein, dass die Signalstoffe, mit denen die Wurzeln die Knöllchenbakterien aus dem Boden anlocken, auch andere Bakterien anziehen, die mit der eigentlichen Symbiose nichts zu tun haben, aber das gleiche Signal als Eintrittskarte nutzen.

Die Ergebnisse sind in verschiedener Hinsicht bemerkenswert. „Weil Hornklee ohne intakte Symbiose kleiner und blasser bleibt als der Wildtyp und weil sich dieses kümmerliche Wachstum mit der Stickstoff-Düngung nur unzureichend ausgleichen lässt, ist es wahrscheinlich, dass dieser Phänotyp direkt mit der für die Mutanten typischen mikrobiellen Lebensgemeinschaft zusammenhängt“, sagt Garrido-Oter. „Ohne die Gene und Genprodukte für eine intakte Symbiose etabliert sich offensichtlich ein Mikrobiom, das die Pflanze nicht mehr optimal mit Nährstoffen versorgt.“

Da Hülsenfrüchtler in der Landwirtschaft oft als Zwischenfrüchte zur Verbesserung des Bodenstickstoffgehaltes eingesetzt werden, sind die Ergebnisse auch über die Grundlagenforschung hinaus relevant. Bisher ging man davon aus, dass die Symbiose nur eine Angelegenheit zwischen den Rhizobien und den Hülsenfrüchtlern ist. Jetzt spricht einiges dafür, dass an der Symbiose charakteristische mikrobielle Lebensgemeinschaften in der Wurzel und der Rhizosphäre beteiligt sind. In diesem Fall würde es nicht mehr genügen, das Saatgut der Hülsenfrüchtler wie derzeit üblich nur mit Rhizobien zu impfen, sondern man müsste es auch mit den relevanten Bakterien des Mikrobioms beimpfen.

HK/HR

Originalpublikation:

Rafal Zgadzaj, Ruben Garrido-Oter et al.
Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizophere, root, and nodule bacterial communities
PNAS: 10.1073/pnas.1616564113

Ansprechpartner:

Prof. Dr. Paul Schulze-Lefert
Max-Planck-Institut für Pflanzenzüchtungsforschung, Köln
Telefon:+49 221 5062-350Fax:+49 221 5062-353
E-Mail:
schlef@mpipz.mpg.de

Prof. Simona Radutoiu
Aarhus University
Telefon:+45 87 15-5498
E-Mail:
radutoiu@mbg.au.dk

Weitere Informationen:

https://www.mpg.de/10823501/rhizobien-symbiose-pflanzenwurzeln

Barbara Abrell | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie