Revolution in der Gentechnik

Streptococcus pyogenes ist eines der Bakterien, dessen CRISPR-Cas-System die HZI-Forscher untersucht haben. © HZI / M. Rohde

Der Einsatz des RNA-gesteuerten CRISPR-Cas9-Systems in der Gentechnik verändert die Biologie. Es ist leichter zu nutzen und effizienter als bisherige Gentechnologie-Werkzeuge und wird so bereits wenige Jahre nach seiner Entdeckung in Laboratorien auf der ganzen Welt eingesetzt.

Diese Entwicklung und die Geschichte des Systems sind die Hauptthemen eines Review-Artikels, der jetzt in der renommierten Fachzeitschrift Science erschienen ist. Geschrieben wurde er von den Entdeckerinnen des Systems, Prof. Emmanuelle Charpentier, die am Helmholtz-Zentrum für Infektionsforschung (HZI) in Braunschweig forscht und an der Medizinischen Hochschule Hannover und der Umeå University, Schweden, lehrt, und Prof. Jennifer Doudna von der University of California, Berkeley, USA.

Zahlreiche Krankheiten werden von Veränderungen in der DNA – dem Buchstaben-Code, aus dem Gene bestehen – verursacht. Die genaue Reihenfolge der Buchstaben innerhalb eines Gens bestimmt, welches Protein gebildet wird. Proteine sind für fast alle wesentlichen Prozesse im Körper verantwortlich und unverzichtbar. Wird ein Gen verändert, drohen die Proteine ihre ursprüngliche Funktion zu verlieren und es kann zu Erkrankungen kommen.

„Zielgenaue Veränderungen am Genom vorzunehmen ist deshalb ein interessanter Ansatz, um solche Krankheiten zu therapieren oder zu verhindern“, sagt Emmanuelle Charpentier, Leiterin der Abteilung „Regulation in der Infektionsbiologie“ am HZI. Aus diesem Grund suchen Wissenschaftler bereits seit der Entdeckung der DNA-Struktur nach Wegen, den genetischen Buchstaben-Code zu verändern.

Mit ersten Technologien, wie der Zink-Finger-Nuklease und synthetischen Nukleasen, TALENs genannt, wurde ein Anfang gemacht. Allerdings stellte sich schnell heraus, dass sie teuer und für Anfänger schwer zu handhaben sind. „Die bestehenden Technologien nutzen Proteine als Wegweiser. Für jede Änderung in der DNA ein neues Protein herzustellen, ist ein mühsames Unterfangen“, sagt Charpentier. Im Jahr 2012 beschrieb sie, während ihrer Tätigkeit an der schwedischen Umeå University, erstmals das Werkzeug, dass derzeit die Gentechnik revolutioniert: das CRISPR-Cas9-System.

Es basiert auf dem Immunsystem von Bakterien und Archaea, hat aber auch für die Laborarbeit einen großen Wert. Während CRISPR für Clustered Regularly Interspaced Palindromic Repeats (zu Deutsch etwa „Regelmäßige Anordnung von kleinen, symmetrischen Wiederholungen“) steht, bezeichnet Cas9 das CRISPR-assoziierte Protein. „Im Jahr 2011 haben wir eine neue, dem CRISPR-Cas9-System zugehörige RNA, die tracrRNA, identifiziert und in Nature beschrieben. Wir waren begeistert, als Krzysztof Chylinski aus meinem Labor eine unserer Vermutungen bestätigen konnte, indem er zeigte, dass Cas9 mit zwei RNAs funktioniert“, sagt Charpentier.

Gemeinsam ist das System in der Lage, bestimmte Buchstaben-Abfolgen im genetischen Code aufzuspüren und DNA an einem exakten Punkt zu schneiden. Cas9 fungiert dabei als Schere und ein RNA-Schnipsel sozusagen als Wegweiser, der dafür sorgt, dass am richtigen Ort geschnitten wird. In Zusammenarbeit mit Martin Jinek und Jennifer Doudna gelang es den Wissenschaftlern, das System so zu vereinfachen, dass es universell eingesetzt werden kann. Um eine Sequenz innerhalb des Genoms anzupeilen, muss der Nutzer dank der neuen Technologie lediglich den RNA-Schnipsel entsprechend anpassen.

Nachdem die generelle Funktion des Systems 2012 beschrieben war, konnte Anfang 2013 gezeigt werden, dass es auch in menschlichen Zellen funktioniert. Seitdem ist es als Gentechnik-Werkzeug in aller Munde und Wissenschaftler aus aller Welt beschäftigen sich mit seinen Anwendungsmöglichkeiten. Diese reichen von Therapien gegen Erbkrankheiten über Verbesserungen in der Landwirtschaft bis hin zu neuen Ansätzen für den Kampf gegen den AIDS-Erreger HIV.

„Das CRISPR-Cas9-System hat Grenzen durchbrochen und Gentechnik einfacher und effizienter gemacht“, sagt Charpentier. „Die Bandbreite möglicher Anwendungen scheint derzeit unerschöpflich zu sein.“

Das Helmholtz-Zentrum für Infektionsforschung:

Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Die Abteilung Regulation in der Infektionsbiologie von Emmanuelle Charpentier untersucht, wie die Expression von bakterieller RNA und bakteriellen Proteinen gesteuert wird. Diese beiden Faktoren haben entscheidenden Einfluss auf Beginn und Verlauf von Infektionen.

Media Contact

Rebecca Winkels Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer