Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Researchers turn one form of neuron into another in the brain

21.01.2013
Opening a new avenue in neurobiology

A new finding by Harvard stem cell biologists turns one of the basics of neurobiology on its head – demonstrating that it is possible to turn one type of already differentiated neuron into another within the brain.

The discovery by Paola Arlotta and Caroline Rouaux "tells you that maybe the brain is not as immutable as we always thought, because at least during an early window of time one can reprogram the identity of one neuronal class into another," said Arlotta, an Associate Professor in Harvard's Department of Stem Cell and Regenerative Biology (SCRB).

The principle of direct lineage reprogramming of differentiated cells within the body was first proven by SCRB co-chair and Harvard Stem Cell Institute (HSCI) co-director Doug Melton and colleagues five years ago, when they reprogrammed exocrine pancreatic cells directly into insulin producing beta cells.

Arlotta and Rouaux now have proven that neurons too can change their mind. The work is being published on-line today (Jan. 20) by the journal Nature Cell Biology.

In their experiments, Arlotta targeted callosal projection neurons, which connect the two hemispheres of the brain, and turned them into neurons similar to corticospinal motor neurons, one of two populations of neurons destroyed in Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease. To achieve such reprogramming of neuronal identity, the researchers used a transcription factor called Fezf2, which long as been known for playing a central role in the development of corticospinal neurons in the embryo.

What makes the finding even more significant is that the work was done in the brains of living mice, rather than in collections of cells in laboratory dishes. The mice were young, so researchers still do not know if neuronal reprogramming will be possible in older laboratory animals – and humans. If it is possible, this has enormous implications for the treatment of neurodegenerative diseases.

"Neurodegenerative diseases typically effect a specific population of neurons, leaving many others untouched. For example, in ALS it is corticospinal motor neurons in the brain and motor neurons in the spinal cord, among the many neurons of the nervous system, that selectively die," Arlotta said. "What if one could take neurons that are spared in a given disease and turn them directly into the neurons that die off? In ALS, if you could generate even a small percentage of corticospinal motor neurons, it would likely be sufficient to recover basic functioning," she said.

The experiments that led to the new finding began five years ago, when "we wondered: in nature you never seen a neuron change identity; are we just not seeing it, or is this the reality? Can we take one type of neuron and turn it into another?" Arlotta and Rouaux asked themselves.

Over the course of the five years, the researchers analyzed "thousands and thousands of neurons, looking for many molecular markers as well as new connectivity that would indicate that reprogramming was occurring," Arlotta said. "We could have had this two years ago, but while this was a conceptually very simple set of experiments, it was technically difficult. The work was meant to test important dogmas on the irreversible nature of neurons in vivo. We had to prove, without a shadow of a doubt, that this was happening."

The work in Arlotta's lab is focused on the cerebral cortex, but "it opens the door to reprogramming in other areas of the central nervous system," she said.

Arlotta, an HSCI principal faculty member, is now working with colleague Takao Hensch, of Harvard's Department of Molecular and Cellular Biology, to explicate the physiology of the reprogrammed neurons, and learn how they communicate within pre-existing neuronal networks.

"My hope is that this will facilitate work in a new field of neurobiology that explores the boundaries and power of neuronal reprogramming to re-engineer circuits relevant to disease," said Paola Arlotta.

This work was financed by a seed grant from the Harvard Stem Cell Institute, and by support from the National Institutes of Health, and the Spastic Parapelgia Foundation.

Paola Arlotta | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Identifying drug targets for leukaemia
02.05.2016 | The Hong Kong Polytechnic University

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

 

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Winzige Mikroroboter, die Wasser reinigen können

Forscher des Max-Planck-Institutes Stuttgart haben winzige „Mikroroboter“ mit Eigenantrieb entwickelt, die Blei aus kontaminiertem Wasser entfernen oder organische Verschmutzungen abbauen können.

In Zusammenarbeit mit Kollegen in Barcelona und Singapur verwendete die Gruppe von Samuel Sánchez Graphenoxid zur Herstellung ihrer Motoren im Mikromaßstab. D

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: Bewegungen in der lebenden Zelle beobachten

Prinzipien der statistischen Thermodynamik: Forscher entwickeln neue Untersuchungsmethode

Ein Forscherteam aus Deutschland, den Niederlanden und den USA hat eine neue Methode entwickelt, mit der sich Bewegungsprozesse in lebenden Zellen nach ihrem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2016: Diabetes schädigt das Herzkreislauf-System

02.05.2016 | Veranstaltungen

Internationale Bunsen-Tagung erstmals an Uni Rostock

02.05.2016 | Veranstaltungen

VDE|DGBMT veranstaltet Tagung zur patientennahen mobilen Diagnostik POCT

28.04.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Industrielle Förderanlagen effizient und einfach umbauen

02.05.2016 | Informationstechnologie

Diabetes Kongress 2016: Diabetes schädigt das Herzkreislauf-System

02.05.2016 | Veranstaltungsnachrichten

2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

02.05.2016 | Physik Astronomie