Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reiserouten expansiver Proteinpartikel

27.03.2013
Studie mit Zellkulturen gibt Einblicke in die Mechanismen neurodegenerativer Erkrankungen

Bei Erkrankungen wie Alzheimer und Parkinson sammeln sich körpereigene Eiweißmoleküle im Gehirn an, was schließlich zum Absterben von Nervenzellen führt. Es wird angenommen, dass diese Partikel aus verformten Proteinen entlang miteinander verbundener Hirnregionen wandern und somit zur Krankheitsentwicklung beitragen. Nun beweisen neueste Laboruntersuchungen einer deutsch-amerikanischen Forschergruppe, dass bestimmte Eiweißpartikel sich tatsächlich vermehren und von Zelle zu Zelle fortzupflanzen können.


Nervenzellen unter dem Mikroskop: Vermehrung von Eiweißpartikeln von Zelle zu Zelle. Der Kontakt von Zellen, welche Eiweißpartikel produzieren (hier türkis gefärbt), führt in Nachbarzellen ebenfalls zu Ablagerungen desselben Proteins (grün gefärbt). In blau ist der Zellkern erkennbar. Quelle: J. Hofmann

Die Studie wurde von Wissenschaftlern des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) in Bonn und München in Zusammenarbeit mit weiteren Forschern aus Deutschland und den USA durchgeführt. Die Ergebnisse sind jetzt im Fachjournal „PNAS“ (Proceedings of the National Academy of Sciences of the USA) erschienen.

Können Partikel aus deformierten Eiweißmolekülen vom Inneren einer Zelle in die nächste gelangen, sich vermehren und in einer Kettenreaktion immer weiter ausbreiten? Die Forscher um Ina Vorberg, Gruppenleiterin am Bonner Standort des DZNE und Professorin an der Universität Bonn, untersuchten diese Hypothese. Sie nutzten dafür Zellkulturen, was es ihnen ermöglichte, Experimente auf spezifische Fragen zuzuschneiden.
Die Wissenschaftler verwendeten Nervenzellen, die ursprünglich aus der Maus stammten und die sie im Labor kultivierten. In diese Zellen schleusten sie den Bauplan eines Modellproteins ein, wodurch sie die Produktion des Eiweißmoleküls gezielt steuern konnten.

Teilchen aus der Hefe
Die Wahl fiel auf ein bestimmtes Molekül aus dem Erbgut der Hefe, das zwar beim Menschen nicht vorkommt, aber Eigenschaften besitzt, die für die Studie relevant waren: Das Protein ist in seiner natürlichen Umgebung – der Hefezelle – in der Lage, sich zu großen Eiweißpartikeln (sogenannten Aggregaten) zusammen zu lagern, die sich innerhalb der Zelle vermehren. Das Protein nimmt dabei eine abnorme Gestalt an. Nun war die Frage, ob in der Zelle eines Säugetieres ein ähnlicher Vorgang stattfinden würde.

„Zunächst stellten unsere Mauszellen das Protein zwar her, aber es bildete keine Partikel“, berichtet Vorberg. „Dies änderte sich jedoch, wenn wir Eiweißaggregate desselben Proteins von außen zugaben. Plötzlich begann unser lösliches Protein in der Zelle zu verklumpen.“

Diffundierende Aggregate
War diese Reaktion einmal ausgelöst, produzierten die Zellen kontinuierlich neue Eiweißaggregate. Die Forscher stellten fest, dass diese Klumpen auch auf Nachbarzellen übergriffen und in diesen die Produktion der gleichen Aggregate in Gang setzten.

„Damit haben wir experimentell bewiesen, dass bestimmte Eiweißpartikel, die aus dem Zytosol, also aus dem Innenraum von Säugetierzellen stammen, sich vermehren und von Zelle zu Zelle ausbreiten können. Demnach gibt es bei Säugetieren Mechanismen, die eine solche Kettenreaktion grundsätzlich auslösen können. Was wir hier im Model gezeigt haben, könnte daher in ähnlicher Form bei neurodegenerativen Erkrankungen stattfinden“, kommentiert Vorberg die Ergebnisse.

Die Übertragung der Eiweißaggregate war am effektivsten, grenzten Zellen direkt aneinander. „Zumindest in unserem Modell werden die Proteinpartikel nicht effizient in die Umgebung abgegeben und von den Nachbarzellen aufgenommen. Die effektivste Übertragung geschieht über direkten Zellkontakt. Es könnte sein, dass eine Zelle Fortsätze ausbildet und die Aggregate über diese Verbindung von einer Zelle zur nächsten gelangen“, sagt die Neurowissenschaftlerin. Was hier geschieht, will ihr Team nun weiter untersuchen.

Grundlagen möglicher Therapien
„Es ist wichtig zu wissen, wie sich Eiweißpartikel verbreiten“, betont Vorberg. „Krankheitsrelevante Proteinpartikel könnten sich in ähnlicher Weise ausbreiten, wie das Modellprotein, das wir untersucht haben.“
Einblicke in den Mechanismus der Übertragung von einer Zelle zur nächsten könnten neue Behandlungsmethoden erschließen. „Finden wir einen Weg, um die Ausbreitung krankheitsrelevanter Eisweißklumpen zu verhindern, dann könnten wir möglicherweise auf das Voranschreiten der Erkrankung einwirken“, sagt Vorberg.

Originalveröffentlichung
„Cell-to-cell propagation of infectious cytosolic protein aggregates”, Julia P. Hofmann, Philip Denner, Carmen Nussbaum-Krammer, Peer-Hendrik Kuhn, Michael H. Suhre, Thomas Scheibel, Stefan F. Lichtenthaler, Hermann M. Schätzl, Daniele Bano, Ina M. Vorberg, PNAS, online unter: http://www.pnas.org/content/early/2013/03/15/1217321110.abstract

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Einrichtungen. Website: www.dzne.de

Pressekontakt
Prof. Dr. Ina M. Vorberg
Gruppenleiterin
DZNE, Bonn
Tel.: 0228/43302-560
E-Mail: ina.vorberg@dzne.de

Dr. Dirk Förger
Leiter Presse- und Öffentlichkeitsarbeit des DZNE
DZNE, Bonn
Tel.: 0228/43302-260
E-Mail: dirk.foerger@dzne.de

Sonja Jülich-Abbas | idw
Weitere Informationen:
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics