Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulation eines embryonalen kleinen Hitzeschock-Proteins aufgeklärt

11.06.2015

Kleine Hitzeschock-Proteine sorgen dafür, dass andere Proteine bei Stress nicht verklumpen und ermöglichen der Zelle zu überleben. Defekte dieser „kleinen Helfer“ werden mit Krankheiten wie grauem Star oder Krebs in Verbindung gebracht. Nun haben Wissenschaftler der Technischen Universität München (TUM) ein kleines Hitzeschock-Protein beim Fadenwurm Caenorhabditis elegans charakterisiert, das speziell für dessen Embryonalentwicklung zuständig ist. Vermutlich gibt es ein ähnliches Protein auch im Menschen.

Auch Zellen kennen Katastrophen. Zwar werden sie nicht von Hurrikans heimgesucht oder von Erdbeben erschüttert, doch die Zerstörung, die etwa Hitze oder Strahlung anrichten können, ist ähnlich verheerend: Wichtige Proteine, die beispielsweise chemische Reaktionen steuern, Stoffe transportieren oder Signalstoffe erkennen, verlieren ihre Struktur und werden so unbrauchbar. Die Prozesse in der Zelle laufen dann aus dem Ruder.


Struktur des kleinen Hitzeschock-Proteins Sip1 (Röntgenstrukturanalyse; Draufsicht)

Tilly Fleckenstein / TUM

Doch auch die Zelle hat Katastrophenhelfer. Kleine Hitzeschock-Proteine verhindern, dass die anderen Proteine zu einem wirren Knäuel verklumpen und sorgen dafür, dass sie ihre korrekte Struktur behalten. Auf diese Weise können sie weiter ihre Arbeit verrichten und die Zelle überlebt. Neun solcher Helferproteine sind derzeit im Menschen bekannt, und sie sind sehr vielseitig. Sie agieren in unterschiedlichen Geweben: in Hirn, Herz und Muskelgewebe bis hin zur Augenlinse, deren Trübung sie verhindern.

Funktioniert ein kleines Hitzeschock-Protein nicht richtig, können ganz unterschiedliche Krankheiten wie grauer Star, bestimmte neuronale Erkrankungen oder Krebs die Folge sein. Wissenschaftler sind daher sehr interessiert daran, heraus zu finden, wofür welche Hitzeschockproteine zuständig sind, wie sie molekular aufgebaut sind und wie sie reguliert werden.

Ein Schutzprotein speziell für die embryonale Entwicklung

Nun ist es einer Gruppe von Wissenschaftlern der TU München um Johannes Buchner, Professor für Biotechnologie, Sevil Weinkauf, Professorin für Elektronenmikroskopie und Michael Groll, Professor für Biochemie, erstmals gelungen, im Fadenwurm Caenorhabditis elegans Molekularstruktur und Funktion eines kleinen Hitzeschock-Proteins zu charakterisieren, das ausschließlich in den Eizellen und Embryos des Wurms vorkommt.

Die Forscher fanden heraus, dass das Protein Sip1 spezifisch für die Entwicklung der Embryos zuständig ist und dass es nicht etwa über die Temperatur, sondern über den pH-Wert reguliert wird. „Sip1 ist das einzige kleine Hitzeschock-Protein mit diesen Eigenschaften, das wir kennen“, sagt Buchner.

„Es übernimmt die schwierige Aufgabe, in der embryonalen Lebensphase in einem sich schnell teilenden Gewebe und in saurer Umgebung das Proteingleichgewicht aufrecht zu erhalten. Kein anderes uns bekanntes Hitzeschockprotein kann das“. Die Mitglieder der Familie der kleinen Hitzeschockproteine teilen sich quasi die Arbeit – jeder ist für den Katastrophenschutz in einer anderen Situation zuständig.

Auch wenn Sip1 nur im Fadenwurm vorkommt, sind die Erkenntnisse auch für den Menschen interessant. „Wir wissen noch nicht, ob ein Protein mit ähnlicher Funktion auch in der menschlichen Embryonalentwicklung eine Rolle spielt, doch wir vermuten es“, sagt Buchner. Wie ähnlich sich die kleinen Hitzeschock-Proteine des Wurms und des Menschen an manchen Stellen sind, zeigt die Kristallstruktur des Sip1 Proteins. Die Art und Weise, wie zwei zentrale Teile des Proteinkomplexes zusammenwirken, gleicht der des Alpha-B-Crystallins der menschlichen Augenlinse.

Fertigbauprinzipien beim Aufbau der Schutzproteine

Nur dank der engen Zusammenarbeit der Forscher aus unterschiedlichen Fachbereichen der Fakultät für Chemie war es möglich zu verstehen, wie Struktur, Regulation und Funktion des Sip1 Proteins zusammenhängen. Zunächst stellten sie in biologischen und biochemischen Experimenten fest, wie bedeutsam Sip1 für das Überleben der Fadenwurm-Embryos ist. Sie fanden heraus, wie es, aktiviert durch einen niedrigen pH Wert, wichtige embryonale Proteine bei Hitzestress am Verklumpen hindert.

Elektronenmikroskopische Aufnahmen und Kristallstrukturanalysen fügten ein weiteres Puzzleteil zum Gesamtbild hinzu: Sie zeigten, dass das Protein nicht nur in einer, sondern in mehreren Formen gleichzeitig vorliegt, die entweder aus 32, 28 oder 24 identischen Untereinheiten bestehen. Bei hohem pH Wert sind mehr große Proteinkomplexe vorhanden und das Protein ist nicht aktiv. Sinkt der pH Wert jedoch, zerfallen die großen Komplexe und das Schutzprotein wird aktiviert.

In zukünftigen Projekten wollen die Wissenschaftler um Buchner, Weinkauf und Groll den molekularen Schalter finden, der dafür sorgt, dass die großen Vertreter von Sip1 in die kleinen zerfallen.

Die Forschungen sind Teil des von der Deutschen Forschungsgemeinschaft (DFG) an der TUM geförderten Sonderforschungsbereichs SFB1035. Er hat sich zum Ziel gesetzt herauszufinden, wie Proteine durch Änderungen ihrer 3D Struktur gesteuert werden. Darüber hinaus war an der Finanzierung der Exzellenzcluster „Center for Integrated Protein Science Munich“ (CIPSM) beteiligt.

Ein 3D-Modell des Proteinkomplexes wird bei der „Langen Nacht der Wissenschaften“ des Campus Garching am 27. Juni 2015 von 18 bis 24 Uhr in der Ausstellung der Exzellenzcluster im Institute for Advanced Study zu sehen sein.

Originalpublikation:

Tilly Fleckenstein, Andreas Kastenmüller, Martin Lorenz Stein, Carsten Peters, Marina Daake, Maike Krause, Daniel Weinfurtner, Martin Haslbeck, Sevil Weinkauf, Michael Groll, Johannes Buchner:
The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes, Molecular Cell 58,1-12, June 18, 2015
DOI: 10.1016/j.molcel.2015.04.019

Kontakt:

Prof. Dr. Johannes Buchner
Technische Universität München
Chemie Department
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13340
E-Mail: johannes.buchner@tum.de
Internet: http://www.biotech.ch.tum.de/index.php?id=555

Dr. Ulrich Marsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie