Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regulation der Blutgerinnung: Molekulare Schaltstellen weisen blutbildenden Zellen den Weg

16.06.2017

Wissenschaftlern der Universität Würzburg um Professor Bernhard Nieswandt ist es gelungen, neue Details zum Regelkreis der Thrombozytenbildung zu entschlüsseln. Die neuen Erkenntnisse könnten helfen, die Mechanismen hinter Blutungskrankheiten aufzuklären.

Thrombozyten, auch Blutplättchen genannt, spielen eine wichtige Rolle in der Blutgerinnung. Sie heften sich bei Verletzung eines Blutgefäßes an das umliegende Gewebe an und sorgen in einem dynamischen Prozess dafür, dass Verletzungen verschlossen und Heilungsprozesse ausgelöst werden. Da die Lebenszeit von Blutplättchen im Menschen etwa zehn Tage beträgt, müssen sie ständig neu gebildet werden.


Mikroskopaufnahme von intaktem Knochenmarkgewebe. Normalerweise lagern sich reife Megakaryozyten (grün) an die Gefäßwand (rot) an und geben neue Blutplättchen in die Blutbahn ab. Zellkerne in blau.

Foto: AG Nieswandt


Mikroskopaufnahme von krankhaftem Knochenmarkgewebe. Durch das Fehlen der Rho GTPase "RhoA" wandern Megakaryozyten (grün) in Blutgefäße (rot) ein. Dadurch ist die Blutplättchenbildung massiv gestört.

Foto: AG Nieswandt

Ihren Ursprung finden die Blutplättchen im Knochenmark, wo riesige Vorläuferzellen, die so genannten Megakaryozyten, nach einem komplexen Reifungsprozess die neuen Thrombozyten direkt in die Blutbahn abgeben. Ist dieser Prozess gestört, entstehen zu wenige oder fehlerhafte Blutplättchen, was mitunter lebensbedrohliche Blutungen zur Folge haben kann. Bis heute ist jedoch noch vieles über den Ablauf und die Regulation des Reifungsprozesses der Megakaryozyten und die Freisetzung der Blutplättchen unklar.

Folgenreiche Störungen der molekularen Schaltstellen

Forschern des Rudolf-Virchow-Zentrums für Experimentelle Biomedizin und des Universitätsklinikums Würzburg ist es nun gelungen, einen wichtigen Regelkreis dieses lebensnotwendigen Prozesses zu entschlüsseln. Die Arbeitsgruppe um Prof. Bernhard Nieswandt identifizierte wichtige Faktoren in Megakaryozyten, welche deren Reifung und Orientierung hin zu den Blutgefäßen steuern. Dies ist wichtig, um eine normale Bildung der Blutplättchen zu ermöglichen. Zu diesen Faktoren gehören vor allem die sogenannten Rho GTPasen. Das sind kleine Proteine, die in Zellen als molekulare Schaltstellen verschiedene Funktionen wie Bewegung und Orientierung im Gewebe regeln.

"Mit unserer Arbeit konnten wir zeigen, dass ein Defekt oder gar das Fehlen einer dieser Schaltstellen dafür sorgt, dass Megakaryozyten ihre korrekte Orientierung verlieren und irrtümlich in das Blutgefäß einwandern können", sagt Prof. Nieswandt, Leiter der Studie. Dadurch sei die normale Blutplättchenbildung unmöglich, was in Versuchsmäusen zu einer dramatisch verringerten Blutplättchenzahl und zu Blutungsproblemen geführt habe. Diese überraschenden Befunde bilden nun die Grundlage für ein neues Verständnis, wie Blutplättchen im Knochenmark gebildet werden und könnten darüber hinaus auch für die Entstehung anderer Blutzellen bedeutsam sein.

Therapeutischer Ansatz bei Blutungskrankheiten

Von der Entdeckung dieses Rho-GTPase-Regelkreises bei der Blutplättchenbildung erwartet die Forscher grundlegende neue Einblicke in die Ursachen von Krankheiten wie das Bernhard-Soulier Syndrom. Bei dieser Blutungskrankheit leiden betroffene Patienten unter einer stark verminderten Anzahl an Blutplättchen (Thrombozytopenie), was mit lebenslangen und vielfach schwerwiegenden Blutungskomplikationen verbunden ist.

„Aufbauend auf unseren Befunden könnten in Zukunft neue Wirkstoffe zur Behandlung von Erkrankungen, die mit gestörter Blutplättchenbildung einhergehen, entwickelt werden“, hofft Prof. Nieswandt. Ihre neuen Erkenntnisse konnten die Würzburger Forscher jetzt zusammen mit einem internationalen Wissenschaftlerteam in einem Artikel in der Fachzeitschrift Nature Communications veröffentlichen.

Publikation:
Dütting, S. et al. (2017) A Cdc42/RhoA regulatory circuit downstream of glycoprotein Ib guides transendothelial platelet biogenesis. Nature Communications. 8, 15838 doi: 10.1038/ncomms15838

Website:
http://www.rudolf-virchow-zentrum.de/home.html
http://www.virchow.uni-wuerzburg.de/lab_pages/nieswandt/

Kontakt:
Prof. Dr. Bernhard Nieswandt (Lehrstuhlinhaber Experimentelle Biomedizin - vaskuläre Medizin, Rudolf-Virchow-Zentrum)
Tel. +49 (0)9 31/ 31 - 80405, bernhard.nieswandt@virchow.uni-wuerzburg.de

Katja Aurbach (Doktorandin, Lehrstuhl für Experimentelle Biomedizin - vaskuläre Medizin)
+49 (0)9 31/ 31 - 99813, aurbach_K1@ukw.de

Dr. Frank Sommerlandt (Public Science Center, Rudolf-Virchow-Zentrum)
Tel. 0931 31 88449, frank.sommerlandt@uni-wuerzburg.de

Dr. Frank Sommerlandt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen
12.12.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Undercover im Kampf gegen Tuberkulose
12.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mit Quantenmechanik zu neuen Solarzellen: Forschungspreis für Bayreuther Physikerin

12.12.2017 | Förderungen Preise

Stottern: Stoppsignale im Gehirn verhindern flüssiges Sprechen

12.12.2017 | Biowissenschaften Chemie

E-Mobilität: Neues Hybridspeicherkonzept soll Reichweite und Leistung erhöhen

12.12.2017 | Energie und Elektrotechnik