Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Regeneration ganzer Körperteile?

13.01.2009
Dresdner Forscher entschlüsseln Rolle eines Gens beim Nachwachsen von Fischflossen.

Gen smp liefert wichtige Antworten zur Neubildung von Körpergewebe

Den molekularen Geheimnissen der Regeneration etwas mehr auf die Spur gekommen sind jetzt Forscher am DFG-Forschungszentrum für Regenerative Therapien Dresden (CRTD) und am Max-Planck-Institut für Entwicklungsbiologie in Tübingen. In der aktuellen Ausgabe der Fachzeitschrift Developmental Biology beschreiben sie die neu entdeckte Funktion des Zebrafisch-Gens fam53b/simplet (smp) in Bezug auf den Regenerationsprozess von Geweben. Die Definition solcher molekularer Faktoren ist, laut Dr. Antos vom CRTD, Voraussetzung dafür, zu verstehen, wie sich Körpergewebe nach Verlust wieder neu bildet.

Während der Neubildung von Schwanzflossen beim Zebrafisch reguliert smp zum einen die Vermehrung von Zellen und zum anderen die Aktivierung von Genen. In vorangegangenen Studien ist bereits die Rolle von smp im Prozess der Zellvermehrung identifiziert worden. In der nun vorliegenden Studie haben die Dresdner und Tübinger Forscher erkannt, dass smp während der frühen Regeneration der Schwanzflosse und des Herzens aktiv wird und die Struktur (Patterning) des neu entstehenden Gewebes maßgeblich beeinflusst. "Die starke Vermehrung von Zellen und die Regulierung von Genen nach dem Verlust von Körperteilen ist Teil des natürlichen Regenerationsprozesses bei Organismen, die die Fähigkeit besitzen, ganze Körperteile wiederherzustellen", so Christopher Antos. "Der Zebrafisch kann verschiedene Gewebe, wie beispielsweise Flossen und Herz nach Teilverlust vollständig regenerieren." Dabei spielt smp eine wichtige Rolle: "Im Zebrafisch wird smp bei der Neubildung der Flossen und des Herzens 'angeschaltet'. Allerdings wird durch die Unterdrückung dieses Gens der Regenerationsprozess verhindert", so Antos.

In dieser Studie haben die Forscher auch zeigen können, dass smp zwei Gene (msxb und shh) kontrolliert, die während der Regeneration wichtig sind. So beeinflusst smp die Aktivierung dieser Gene beim Nachwachsen von Schwanzflossen des Zebrafisches. "Herausgefunden haben wir diesen Zusammenhang, indem wir smp in einem Versuch 'ausgeschaltet' haben. Danach wurden die Gene shh und msx vermehrt gebildet", erklärt Dr. Antos. Da nicht nur die reine Menge von neuen Zellen bei der Wiederherstellung von Gewebe wichtig ist, untersuchten die Wissenschaftler auch die Aufgabe des Gens smp bei der Strukturbildung von neuen Körperteilen. Manche Fische mit verminderter Menge an smp bilden mehr Knochen während der Regeneration der Schwanzflosse, allerdings am falschen Ort. "Demnach ist smp sehr wichtig, um Körperteile nach Verlust wieder fehlerfrei nachwachsen zu lassen", fasst Antos zusammen.

In zukünftigen Studien werden sich die Forscher weiter mit dem Gen smp und dessen Funktion im Regenerationsprozess beschäftigen. So ist zurzeit völlig unbekannt, wie dieses Molekül Zellvermehrung und Gewebe-Architektur kontrolliert. "Wir möchten herausfinden, wie smp Zellvermehrung und möglicherweise Gewebebildung steuert, um neue Strukturen zu regenerieren. Das Hauptaugenmerk liegt jetzt auf der Analyse der Kontrolle des Gens, zum Beispiel: Wie wird es angeschaltet?", so Christopher Antos.

Lässt diese Entdeckung auch Rückschlüsse auf den Menschen zu? Es gibt in der Tat ein menschliches Gen, das dem Zebrafisch Gen smp sehr ähnlich ist. "Das Potential dieses Genes bei der Neubildung von menschlichen Geweben ist bis jetzt nicht erforscht", sagt Christopher Antos. Durch die Identifikation weiterer molekularer Zusammenhänge bei der Regenerierung sind therapeutische Ansätze für die Neubildung von menschlichem Gewebe zukünftig durchaus denkbar.

Kizil C, Otto GW, Geisler R, Nüsslein-Volhard C, Antos CL. "Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration." Dev Biol. 2009. Vol. 325: 329-340.

Hintergrund: DFG-Forschungszentrum für Regenerative Therapien Dresden (CRTD)
Das CRTD wurde im Oktober 2006 als das Exzellenzcluster der TU Dresden "From Cells to Tissues to Therapies" in der Exzellenzinitiative des Bundes bewilligt und ist bisher das einzige in den neuen Bundesländern. Die Forschung im Zentrum hat zum Ziel regenerative Therapien für Krankheiten, wie Diabetes, Parkinson, oder Herz-Kreislauferkrankungen zu entwickeln. Das CRTD hat einen interdisziplinären Netzwerkcharakter mit etwa 80 Mitgliedern aus verschiedenen Forschungseinrichtungen Dresdens und mehreren Partnern aus der Wirtschaft.
Kontakt für Journalisten:
Katrin Bergmann, Pressesprecherin CRTD, Tel.: 0351 463 40347
E-Mail: katrin.bergmann@crt-dresden.de
Christopher Antos, Forschungsgruppenleiter am CRTD, Tel.: 0351 463 40121
E-Mail: christopher.antos@crt-dresden.de

Katrin Bergmann | idw
Weitere Informationen:
http://www.crt-dresden.de
http://www.crt-dresden.de/index.php?id=94
http://dx.doi.org/10.1016/j.ydbio.2008.09.032

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research