Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Realisierung von Mikrofluidikchips aus photosensitivem Glas für nanostrukturierte Zellträgersysteme

27.11.2014

Dreidimensional mikrostrukturierte Zellträger spielen eine Schlüsselrolle in der Herstellung künstlicher Gewebe. Prozesse wie Zellproliferation und Zelldifferenzierung lassen sich hierbei über die definierte Einstellung struktureller und geometrischer Eigenschaften beeinflussen.

Durch Ausnutzung des Mehrphotoneneffektes ist es möglich, Schwellenenergiedichten diskret im Glasvolumen von Lithium-Aluminium-Silicatgläsern zu applizieren, um im Laserfokus photochemische Gefügemodifizierungen zur Herstellung „vergrabener“ Strukturen im Submikrometerbereich zu erzielen. Diese können dann als mikrofluidisches Setup in Verbindung mit einem miniaturisierten Kultivierungssystem genutzt werden.


Modellierung eines mikrofluidischen Kreuzes in den einzelnen Prozessschritten. (a) Computer Modell, (b) Aufnahme nach der Temperung, (c) und (d) geätzte Strukturen nach 25 bzw. 45 Minuten.

Bei photosensitivem Glas handelt es sich um Lithium-Aluminium-Silicatgläser, die zusätzlich mit mehreren Oxiden dotiert sind. Hervorzuheben ist hierbei das Silberoxid Ag2O. Während des Belichtungsprozesses werden Elektronen angeregt und diese wiederum rekombinieren mit den Silberionen.

Das dadurch entstandene atomare Silber clustert während des auf den Belichtungsprozess folgenden Temperregimes zu den sogenannten Silberkeimen. Auf diesen Silberkeimen strukturiert sich das umgebene amorphe Lithium-Silicat wiederum zu einer kristallinen Phase, welche im letzten Prozessschritt, dem nasschemischen Ätzen, herausgewaschen werden kann.

Die im Verbundprojekt entwickelten Technologien sollen genutzt werden, um die Zelladhäsion, -migration, -proliferation und -differenzierung durch Variation der Belichtungsparameter gezielt einstellen zu können. Erwiesen ist beispielsweise, dass sich Stammzellen durch Variation des Untergrunds unterschiedlich entwickeln.

So differenzieren Stammzellen auf weichem Untergrund eher zu Nervenzellen und auf hartem Untergrund bevorzugt zu Zellen des muskuloskelettalen Systems.

Hierfür muss nun zuerst ein geeignetes mikrofluidisches System in das photosensitive Glas geschrieben werden. Entscheidend sind die jeweiligen Belichtungsparameter. Mithilfe dieser Parameter werden nun im Glas unterschiedliche Rautiefenprofile generiert, mit deren Hilfe das Differenzierungsverhalten von Testzellen beeinflusst werden sollen.

Das Forschungsprojekt des Institutes für Bioprozess- und Analysenmesstechnik (iba) e.V. „3D Mikro- und Nanostrukturierung photosensitiver Gläser mit Hilfe von NIR-Femtosekundenlaserstrahlung für Zellträgerstrukturen in Mikrofluidikchips“ (FKZ: LI 916/11-1, Zuwendungsgeber: Deutsche Forschungsgemeinschaft (DFG), Laufzeit: 01.04.2013 - 31.03.2015) wird gemeinsam mit dem Fachgebiet „Anorganisch-nichtmetallische Werkstoffe“ der Fakultät für Maschinenbau an der Technischen Universität Ilmenau bearbeitet.

Weitere Informationen
Prof. Dr.-Ing. Klaus Liefeith, Institut für Bioprozess- und Analysenmesstechnik (iba) e.V., Heilbad Heiligenstadt, Telefon: 03606 / 671 500, E-Mail: klaus.liefeith@iba-heiligenstadt.de


Weitere Informationen:

http://www.iba-heiligenstadt.de

Sebastian Kaufhold | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics