Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Rauschen auf der Spur: Frei zugängliches MATLAB-Tool entwickelt

24.10.2013
Am Max-Planck-Institut Magdeburg ist in der Abteilung Analyse und Redesign Bio-logischer Netzwerke (ARB) innerhalb von 18 Monaten ein grafisches MATLAB-Tool entstanden, mit dessen Hilfe man intrinsisches Rauschen in biochemischen Reaktionsnetzwerken analysieren kann. Im Interview erklärt Entwicklungsleiter Ronny Straube, was durch LiNA (Linear Noise Approximator) möglich ist.

Was kann das von Ihnen entwickelte LiNA-Tool?


Entwicklungsleiter Ronny Straube (links) und Axel von Kamp vor dem Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg
Bildquelle: Max-Planck-Institut Magdeburg | Victoria Grimm

Biologische Netzwerke unterliegen ständigen Fluktuationen, die von der Stochastizität der zugrunde liegenden biochemischen Reaktionen herrühren. Die mathematische Berechnung dieser (in Anlehnung an elektrische Netzwerke) auch als Rauschen bezeichneten Fluktuationen ist im Allgemeinen sehr schwierig und oft nur durch zeitaufwändige Simulationen realisierbar. LiNA erlaubt es, stationäre Fluktuationen in der sogenannten linearen Rauschapproximation (linear noise approximation) zu berechnen und charakteristische Rausch-Kenngrößen, wie den Fanofaktor oder den „Coefficient of Variation“, als Funktion von Systemparametern grafisch darzustellen.

Bei der Berechnung werden im Netzwerk vorhandene Erhaltungsrelationen automatisch berücksichtigt. Bei Bedarf kann der Nutzer kinetische Parameter durch biologisch leichter zu interpretierende Parameterkombinationen, wie zum Beispiel Dissoziationskonstanten oder das Verhältnis von Auf- und Abbaurate einer Reaktion, ersetzen und grafisch darstellen lassen. Außerdem bietet LiNA die Möglichkeit, im System vorhandene Korrelationen zwischen verschiedenen Spezies zu untersuchen, was Aufschluss über die Funktionalität des Netzwerkes liefern kann.

Warum wurde LiNA entwickelt?

Oftmals möchte man verstehen, warum in biologischen Netzwerken bestimmte regulatorische Strukturen besonders häufig oder gerade an einer bestimmten Stelle im Netzwerk vorkommen. LiNA wurde entwickelt, um solche Netzwerkmotive systematisch hinsichtlich ihrer Rauscheigenschaften untersuchen zu können. Dabei kann sich zeigen, dass einige Motive der Rauschunterdrückung dienen, während andere zu besonders großen Fluktuationen führen können. Diese biologische Variabilität kann durchaus gewollt sein, zum Beispiel dann, wenn sich Zellpopulationen in Folge ungünstiger Umweltbedingungen in Subpopulationen mit unterschiedlicher Überlebensstrategie aufteilen.

Für welche Zielgruppe ist LiNA geeignet und für wen ist es zugänglich?

Hauptzielgruppe von LiNA sind theoretisch orientierte Wissenschaftler aus den Bereichen Physik, Biologie und Mathematik, die biologische Netzwerke hinsichtlich ihrer Rauscheigenschaften charakterisieren oder den Einfluss stochastischer Fluktuationen auf die Funktionalität biologischer Netzwerke besser verstehen wollen. Neben Genregulations- und Signalübertragungsnetzwerken können mit LiNA auch rein chemische, auf Massenwirkungskinetik beruhende, Netzwerke untersucht werden. LiNA kann auch vorteilhaft in der Lehre eingesetzt werden: Von Dozenten zur Vorbereitung auf eine Vorlesung oder von Studenten zur Lösung von Übungsaufgaben.

LiNA steht unter der GNU General Public License, ist also frei verfügbar und kann unter http://www.mpi-magdeburg.mpg.de/projects/LiNA herunter geladen werden. Es läuft unter MATLAB (Version 2010b oder höher) und setzt das Vorhandensein der „Symbolic Toolbox“ voraus.

Wer war an der Entwicklung beteiligt?

Mein ehemaliger Student der Biosystemtechnik, Bastian Hagel, der jetzt an der Universität Frankfurt ist, hat die grafische Benutzeroberfläche und den Editor für die Eingabe der biologischen Netzwerke gestaltet und programmiert. Axel von Kamp (ebenfalls PostDoc in der Gruppe ARB) hat die Berechnungen, die Grafikausgabe sowie das Datenmanagement programmiert. Ich selbst war Ideengeber und Leiter der Entwicklung.

Ihr Kontakt zum Max-Planck-Institut Magdeburg

Victoria Grimm
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Dynamik komplexer technischer Systeme
Sandtorstraße 1
D-39106 Magdeburg
Tel: +49-391-6110-140
Fax: +49-391-6110-518
E-mail: presse@mpi-magdeburg.mpg.de

Victoria Grimm | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-magdeburg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie