Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raupenfraß bringt Blätter zum Leuchten

05.06.2015

Wissenschaftler machen in Pflanzen den Prozess der Reizweiterleitung sichtbar, der durch Verwundung ausgelöst wird und letztendlich die Abwehrreaktion gegen Fraßschädlinge steuert.

Wird eine Pflanze von Schädlingen attackiert, löst dies eine ganze Reihe von physiologischen Reaktionen in der Pflanze aus. Wesentliche Botenstoffe für die Verarbeitung von Verwundungsreizen innerhalb pflanzlicher Zellen sind Calciumionen. Sie steuern die Signalweiterleitung und somit indirekt die pflanzliche Verteidigung.


Die Larve einer Baumwolleule Spodoptera littoralis frisst auf einer Ackerschmalwandpflanze (Arabidopsis thaliana).

Sandra Scholz und Monika Heyer / Max-Planck-Institut für chemische Ökologie


Die Abbildung zeigt die über 30 Minuten akkumulierte Lichtmenge, die die veränderten Calciumkonzentrationen repräsentiert. Diese werden über einen Farbcode (blau= niedrig, rot=hoch) dargestellt.

Victoria Kiep / Martin-Luther-Universität, Halle-Wittenberg; Jyothilakshmi Vadassery / Max-Planck-Institut für chemische Ökologie

Wissenschaftlern des Max-Planck-Instituts für chemische Ökologie in Jena und des Instituts für Agrar- und Ernährungswissenschaften der Martin-Luther-Universität Halle ist es jetzt gelungen, die unmittelbaren Reaktionen von Pflanzen auf Verwundungen oder Raupenfraß sichtbar zu machen. Dafür verwendeten sie Pflanzen der Art Arabidopsis thaliana (Ackerschmalwand), die ein spezielles Protein bilden, das nach Bindung von Calciumionen zerfällt und freiwerdende Energie als Licht abstrahlen kann.

Die Lichtmenge gibt dabei die Calciumkonzentrationen in den Zellen der jeweiligen Bereiche der Blätter wider. Mit Hilfe einer hochempfindlichen Kameratechnik konnte der Calciumstrom in der Pflanze visuell verfolgt werden. So wurde deutlich, dass Calciumsignale systemisch auftreten und innerhalb kurzer Zeit von befallenen zu benachbarten Blättern wandern und schließlich die ganze Pflanze in Abwehrbereitschaft versetzen. (New Phytologist, Mai 2015).

Calcium ist ein universeller intrazellulärer Botenstoff. In Pflanzen werden viele physiologische Prozesse über Calciumionen vermittelt, insbesondere Reaktionen auf abiotischen und biotischen Stress, wie zum Beispiel Raupenfraß, der in Pflanzen eine Reihe von Verteidigungsmechanismen in Gang setzt. Wird ein Blatt von einem Insekt angefressen, wird das Verwundungssignal, das vom befallenen Blatt ausgeht, über Calciumionen an andere, nicht befallene Blätter weitergeleitet.

Um die Ausbreitung des Signals sichtbar zu machen, führten die Wissenschaftler Experimente mit transgenen Arabidopsis-Pflanzen durch, die gentechnisch so verändert worden waren, dass sie im Cytosol, dem flüssigen Zellinhalt, ein Protein exprimieren, das zerfällt und Lichtenergie freigibt, nachdem es Calciumionen gebunden hat. Die emittierte Lichtmenge korreliert dabei mit der jeweiligen Calciumionenkonzentration.

Somit werden intrazelluläre Änderungen der Calciumkonzentrationen direkt erfasst. Darüber hinaus können diese Prozesse mittels eines hochsensiblen Kamerasystems, das ladungsgekoppelte Bauteile (CCD, charge-coupled device) verwendet, in den Pflanzen visualisiert werden. „Es ist beeindruckend zu sehen, wie jeder Raupenbiss Blattbereiche aufleuchten lässt und die unmittelbare Reaktion der Pflanzen direkt sichtbar wird", sagt Victoria Kiep, die zusammen mit Jyothilakshmi Vadassery den Großteil der experimentellen Arbeit durchführte.

Wichtig war den Wissenschaftlern der Nachweis, dass das Calciumsignal „systemisch“, das heißt nicht nur lokal, auftritt und innerhalb von wenigen Minuten von einem befallenen Blatt in benachbarte Blätter wandert, um dort die nachfolgenden Abwehrreaktionen auszulösen. Diesen Prozess konnten die Forscher direkt beobachten: „Es gelang uns, den dynamischen Prozess des durch Insektenfraß ausgelösten Impulses von intrazellulärem Calcium als sekundärem Botenstoff und dessen systemische Weiterleitung in nicht befallene Bereiche der Pflanze sichtbar zu machen“, fasst Axel Mithöfer, der Leiter der Projektgruppe „Physiologie der pflanzlichen Abwehr“ in der Abteilung Bioorganische Chemie, die Ergebnisse der Studie zusammen.

Wie die Calciumsignale in verschiedenen, voneinander entfernten Bereichen von Pflanzen ausgelöst werden, ist noch nicht abschließend geklärt. Die Forscher vermuten allerdings, dass elektrische Signale, die über das vaskuläre System von Gefäßpflanzen, sogenannte Leitbündel, transportiert werden, eine wesentliche Rolle spielen. Prinzipiell sind kaum Unterschiede bei den Calciumsignalen zu erkennen, die nach mechanischer Verwundung oder durch Raupenfraß ausgelöst wurden. Allerdings überraschte die Beobachtung, dass die Zugabe von Oralsekret aus Raupen die Weiterleitung des Calciumsignals in benachbarte Blätter im Experiment unterdrückte. Wichtig für die systemische Calciumsignalübertragung ist generell, dass das vaskuläre System des Blattes, also das pflanzliche Gefäßsystem für den inneren Transport von Wasser und Nährstoffen, verwundet wurde.

Die Wissenschaftler möchten nun in weiteren Experimenten herausfinden, welche Art von Verwundung das systemische Calciumsignal auslöst, ob dies beispielsweise auch durch Blattläuse oder Spinnmilben geschehen kann, die das pflanzliche Gewebe zum Saugen von Pflanzensaft anstechen und dabei nur leicht verletzen. Sie möchten untersuchen, wie die Signalweiterleitung in Gräsern aussieht, deren Leitbündelsystem anders aufgebaut ist. Außerdem interessiert sie die Frage, wie weit die Calciumsignale reichen und ob sie bis in die Wurzeln wandern können.

Die Studie veranschaulicht, dass das für das Auslösen pflanzlicher Abwehrreaktionen notwendige Calciumsignal in seiner räumlichen und zeitlichen Ausbreitung visuell verfolgt werden kann. Darüber hinaus konnte sie demonstrieren, dass es möglich ist, die Rolle des Botenstoffs Calciums in Pflanzen in verschiedenen physiologischen und ökologischen Zusammenhängen direkt in intakten Pflanzen zu untersuchen und so besser zu verstehen. [AO/AM]

Originalveröffentlichung:
Kiep, V., Vadassery, J., Lattke, J., Maaß, J.-P., Boland, W., Peiter, E., Mithöfer, A. (2015). Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytologist. doi: 10.1111/nph.13493
http://dx.doi.org/10.1111/nph.13493

Weitere Informationen:
Dr. Axel Mithöfer, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena, Tel. +49 3641 57-1263, E-Mail amithoefer@ice.mpg.de

Kontakt und Bildanfragen:
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1214.html?&L=1
http://www.ice.mpg.de/ext/520.html?&L=1 (Research Group Defense Physiology)

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik