Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rationelles Arbeiten auf kleinem Raum: Neue Einblicke in die Architektur zellulärer Proteinfabriken

23.01.2009
Um Proteine (Eiweiße) zu erzeugen, besitzt jede Zelle ihren eigenen Maschinenpark: Die Ribosomen. Als Baupläne dienen dabei Botenmoleküle aus dem Zellkern.

Meist schließen sich mehrere Ribosomen zu einem Polysom zusammen. Wissenschaftlern des Max-Planck-Instituts für Biochemie gelang es nun erstmals, die dreidimensionale Struktur von Polysomen aufzuklären: Sie sind so angeordnet, dass die erzeugten Proteine den größtmöglichen Abstand wahren, um sich nicht zu verheddern. Bisher glaubte man, Fehlfaltungen würden nur durch spezialisierte Proteine verhindert. Zudem ermöglicht die räumliche Struktur, dass das Botenmolekül geschützt und auf kurzem Weg weiter gereicht wird (Cell 23.1.2009).


Die Abbildung zeigt die kryo-elektronentomographische Aufnahmen zweier Polysomen (links), die schematische Darstellung ihrer Struktur (mitte) sowie den Weg des Botenmoleküls (der mRNA) innerhalb des Polysoms (rechts). Die kleinen Untereinheiten der Ribosomen (gelb) sind ins Innere des Polysoms gerichtet und einander zugewandt, die großen Untereinheiten (blau) und die entstehenden Proteine (symbolisiert durch rote Kegel) orientieren sich nach außen. Eine regelmäßige \"Kopf-an-Kopf\"-Anordnung der Ribosomen führt zu einem schraubenförmigen Polysom (Abb. A, mitte), bei abwechselnder Anordnung erscheinen Polysomen in ebenflächiger Form (Abb. B, mitte). In beiden Fällen wird die mRNA auf möglichst direktem Weg von einem benachbarten Ribosom zum nächsten geschleust (Abb. A und B, rechts). Florian Brandt Max-Planck-Institut für Biochemie

In jedem Protein reihen sich mehrere Hundert oder Tausend Aminosäuren aneinander, die in den Ribosomen in einer bestimmten Reihenfolge verknüpft werden. Die Bauanleitung für die einzelnen Proteine bringt ein fadenförmiges Botenmolekül, die mRNA (messenger RNA) von der DNA im Zellkern zu den Ribosomen. Diese tasten die mRNA Schritt für Schritt ab und übersetzen die genetische Information in die Aminosäure- Sequenz der Proteine: Ist ein Abschnitt abgelesen und die entsprechende Aminosäure in die Kette eingefügt, rückt das Botenmolekül weiter und die nächste Aminosäure folgt.

Damit der Vorgang besonders effizient abläuft und aus einer mRNA zahlreiche Proteine erzeugt werden, reihen sich in der Zelle mehrere Ribosomen zu einem sogenannten Polysom aneinander: Im Polysom läuft die mRNA wie am Fließband von einem Ribosom zum nächsten, sodass mehrere Proteine gleichzeitig entstehen. Wie diese Ribosomen-Kette im Detail aussieht, war bisher noch nicht bekannt.

Ein Kooperationsprojekt unter der gemeinsamen Leitung von Wolfgang Baumeister, Direktor der Abteilung Molekulare Strahlenbiologie, und Ulrich Hartl, Direktor der Abteilung Zelluläre Biochemie, nutzten nun die in Martinsried entwickelte Technik der Kryo-Elektronentomographie, um die Architektur dieser molekularen Fabriken sichtbar zu machen.

Die Kryo-Elektronentomographie ist ein Verfahren mit dem dreidimensionale Strukturen der Zelle direkt untersucht werden können. Der Trick: Die gesamte Zelle bzw. einzelne Zellbestandteile werden blitzartig "schockgefroren", sodass deren räumliche Struktur erhalten bleibt. Anschließend werden aus vielen verschiedenen Blickwinkeln zweidimensionale elektronenmikroskopische Bilder des Objekts aufgenommen, aus denen dann ein dreidimensionales "Bild" rekonstruiert wird.

Die Untersuchungen zeigten, dass die Ribosomen im Polysom dicht gepackt vorliegen und sich so anordnen, dass bestimmte Bauteile - die sogenannten kleinen Untereinheiten - sich zum Inneren des Polysoms hin ausrichten und einander zugewandt sind. Dabei nehmen sie bevorzugt zwei Konfigurationen ein: Entweder liegen die Ribsomen gegeneinander versetzt in einer Ebene (die Untereinheiten liegen "Kopf-an-Kopf"), oder sie sind um 180° gegeneinander verdreht (die Untereinheiten liegen "Kopf-an-Ende"). In beiden Fällen liegen der mRNA Aus- bzw. Eingang benachbarter Ribosomen nah zusammen, sodass das Botenmolekül ohne große Umwege von einem Ribosom zum nächsten gelangt. Sind alle Ribosomen eines Polysoms in der "Kopf-an-Kopf"-Konfiguration einander zugewandt, entsteht eine ausgeprägte schraubenartige Struktur. Bei abwechselnder Anordung mit der "Kopf-an-Ende"-Konfiguration ergibt sich eine flächige Polysomenstruktur (siehe Abbildung).

Das Ablesen der mRNA, die wichtige Übertragung der genetischen Information in die Struktur der Proteine, erfolgt geschützt im Innenraum des Polysoms während sowohl die "Eingänge" durch die die Aminosäuren zu dem Ort in den Ribosomen gelangen, an dem sie verknüpft werden, als auch die "Ausgänge" für die fertigen Proteine dem Zellraum zugewandt und so leicht erreichbar sind.

"Wir haben mit unserer Strukturaufklärung gezeigt, dass die Anordnung der Polysomen dafür sorgt, dass die in benachbarten Ribosomen erzeugten Proteine den größtmöglichen Abstand voneinander einhalten. So wird verhindert, dass sich neu entstehende Proteine miteinander "Verheddern" und Verklumpen", erklärt Hartl, der für seine Forschung zu Proteinfaltungs-Mechanismen bereits mit zahlreichen Preisen geehrt wurde. Die bisherige Annahme, hauptsächlich bestimmte Proteine - sogenannte Chaperone - wären dafür zuständig, erscheint vor dem Hintergrund dieser Ergebnisse in einem neuen Licht: Möglicherweise dienen sie weniger dazu, ein Zusammenklumpen im Polysom gebildeter Proteine zu verhindern - hiervor schützt ja schon der strukturell bedingte Abstand zwischen den Proteinsträngen - als vielmehr dem Zweck, fehlerhafte Faltungen innerhalb eines Proteins zu vermeiden und ein Zusammenklumpen mit Proteinen die in anderen Polysomen gebildet wurden, zu verhindern - ein Fehler der in der vollgestopften zellulären Umgebung, wo Polysomen dicht an dicht auftreten, leicht passieren könnte.

Originalpublikation:
The Native 3D Organization of Bacterial Polysomes; Florian Brandt, Adrian H. Elcock, Stephanie A. Etchells, Julio O. Ortiz, F. Ulrich Hartl and Wolfgang Baumeister;

Cell, DOI 10.1016/j.cell.2008.11.016

Kontakt:

Florian Brandt
Max-Planck Institut für Biochemie
Am Klopferspitz 18
D-82152 Martinsried
mail: fbrandt@biochem.mpg.de
Dr. Monika Gödde
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Telefon: 089 - 8578 3882
mail: goedde@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/baumeister
http://www.biochem.mpg.de/hartl
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise