Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rationelles Arbeiten auf kleinem Raum: Neue Einblicke in die Architektur zellulärer Proteinfabriken

23.01.2009
Um Proteine (Eiweiße) zu erzeugen, besitzt jede Zelle ihren eigenen Maschinenpark: Die Ribosomen. Als Baupläne dienen dabei Botenmoleküle aus dem Zellkern.

Meist schließen sich mehrere Ribosomen zu einem Polysom zusammen. Wissenschaftlern des Max-Planck-Instituts für Biochemie gelang es nun erstmals, die dreidimensionale Struktur von Polysomen aufzuklären: Sie sind so angeordnet, dass die erzeugten Proteine den größtmöglichen Abstand wahren, um sich nicht zu verheddern. Bisher glaubte man, Fehlfaltungen würden nur durch spezialisierte Proteine verhindert. Zudem ermöglicht die räumliche Struktur, dass das Botenmolekül geschützt und auf kurzem Weg weiter gereicht wird (Cell 23.1.2009).


Die Abbildung zeigt die kryo-elektronentomographische Aufnahmen zweier Polysomen (links), die schematische Darstellung ihrer Struktur (mitte) sowie den Weg des Botenmoleküls (der mRNA) innerhalb des Polysoms (rechts). Die kleinen Untereinheiten der Ribosomen (gelb) sind ins Innere des Polysoms gerichtet und einander zugewandt, die großen Untereinheiten (blau) und die entstehenden Proteine (symbolisiert durch rote Kegel) orientieren sich nach außen. Eine regelmäßige \"Kopf-an-Kopf\"-Anordnung der Ribosomen führt zu einem schraubenförmigen Polysom (Abb. A, mitte), bei abwechselnder Anordnung erscheinen Polysomen in ebenflächiger Form (Abb. B, mitte). In beiden Fällen wird die mRNA auf möglichst direktem Weg von einem benachbarten Ribosom zum nächsten geschleust (Abb. A und B, rechts). Florian Brandt Max-Planck-Institut für Biochemie

In jedem Protein reihen sich mehrere Hundert oder Tausend Aminosäuren aneinander, die in den Ribosomen in einer bestimmten Reihenfolge verknüpft werden. Die Bauanleitung für die einzelnen Proteine bringt ein fadenförmiges Botenmolekül, die mRNA (messenger RNA) von der DNA im Zellkern zu den Ribosomen. Diese tasten die mRNA Schritt für Schritt ab und übersetzen die genetische Information in die Aminosäure- Sequenz der Proteine: Ist ein Abschnitt abgelesen und die entsprechende Aminosäure in die Kette eingefügt, rückt das Botenmolekül weiter und die nächste Aminosäure folgt.

Damit der Vorgang besonders effizient abläuft und aus einer mRNA zahlreiche Proteine erzeugt werden, reihen sich in der Zelle mehrere Ribosomen zu einem sogenannten Polysom aneinander: Im Polysom läuft die mRNA wie am Fließband von einem Ribosom zum nächsten, sodass mehrere Proteine gleichzeitig entstehen. Wie diese Ribosomen-Kette im Detail aussieht, war bisher noch nicht bekannt.

Ein Kooperationsprojekt unter der gemeinsamen Leitung von Wolfgang Baumeister, Direktor der Abteilung Molekulare Strahlenbiologie, und Ulrich Hartl, Direktor der Abteilung Zelluläre Biochemie, nutzten nun die in Martinsried entwickelte Technik der Kryo-Elektronentomographie, um die Architektur dieser molekularen Fabriken sichtbar zu machen.

Die Kryo-Elektronentomographie ist ein Verfahren mit dem dreidimensionale Strukturen der Zelle direkt untersucht werden können. Der Trick: Die gesamte Zelle bzw. einzelne Zellbestandteile werden blitzartig "schockgefroren", sodass deren räumliche Struktur erhalten bleibt. Anschließend werden aus vielen verschiedenen Blickwinkeln zweidimensionale elektronenmikroskopische Bilder des Objekts aufgenommen, aus denen dann ein dreidimensionales "Bild" rekonstruiert wird.

Die Untersuchungen zeigten, dass die Ribosomen im Polysom dicht gepackt vorliegen und sich so anordnen, dass bestimmte Bauteile - die sogenannten kleinen Untereinheiten - sich zum Inneren des Polysoms hin ausrichten und einander zugewandt sind. Dabei nehmen sie bevorzugt zwei Konfigurationen ein: Entweder liegen die Ribsomen gegeneinander versetzt in einer Ebene (die Untereinheiten liegen "Kopf-an-Kopf"), oder sie sind um 180° gegeneinander verdreht (die Untereinheiten liegen "Kopf-an-Ende"). In beiden Fällen liegen der mRNA Aus- bzw. Eingang benachbarter Ribosomen nah zusammen, sodass das Botenmolekül ohne große Umwege von einem Ribosom zum nächsten gelangt. Sind alle Ribosomen eines Polysoms in der "Kopf-an-Kopf"-Konfiguration einander zugewandt, entsteht eine ausgeprägte schraubenartige Struktur. Bei abwechselnder Anordung mit der "Kopf-an-Ende"-Konfiguration ergibt sich eine flächige Polysomenstruktur (siehe Abbildung).

Das Ablesen der mRNA, die wichtige Übertragung der genetischen Information in die Struktur der Proteine, erfolgt geschützt im Innenraum des Polysoms während sowohl die "Eingänge" durch die die Aminosäuren zu dem Ort in den Ribosomen gelangen, an dem sie verknüpft werden, als auch die "Ausgänge" für die fertigen Proteine dem Zellraum zugewandt und so leicht erreichbar sind.

"Wir haben mit unserer Strukturaufklärung gezeigt, dass die Anordnung der Polysomen dafür sorgt, dass die in benachbarten Ribosomen erzeugten Proteine den größtmöglichen Abstand voneinander einhalten. So wird verhindert, dass sich neu entstehende Proteine miteinander "Verheddern" und Verklumpen", erklärt Hartl, der für seine Forschung zu Proteinfaltungs-Mechanismen bereits mit zahlreichen Preisen geehrt wurde. Die bisherige Annahme, hauptsächlich bestimmte Proteine - sogenannte Chaperone - wären dafür zuständig, erscheint vor dem Hintergrund dieser Ergebnisse in einem neuen Licht: Möglicherweise dienen sie weniger dazu, ein Zusammenklumpen im Polysom gebildeter Proteine zu verhindern - hiervor schützt ja schon der strukturell bedingte Abstand zwischen den Proteinsträngen - als vielmehr dem Zweck, fehlerhafte Faltungen innerhalb eines Proteins zu vermeiden und ein Zusammenklumpen mit Proteinen die in anderen Polysomen gebildet wurden, zu verhindern - ein Fehler der in der vollgestopften zellulären Umgebung, wo Polysomen dicht an dicht auftreten, leicht passieren könnte.

Originalpublikation:
The Native 3D Organization of Bacterial Polysomes; Florian Brandt, Adrian H. Elcock, Stephanie A. Etchells, Julio O. Ortiz, F. Ulrich Hartl and Wolfgang Baumeister;

Cell, DOI 10.1016/j.cell.2008.11.016

Kontakt:

Florian Brandt
Max-Planck Institut für Biochemie
Am Klopferspitz 18
D-82152 Martinsried
mail: fbrandt@biochem.mpg.de
Dr. Monika Gödde
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Telefon: 089 - 8578 3882
mail: goedde@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/baumeister
http://www.biochem.mpg.de/hartl
http://www.biochem.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie