Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Räumliche Orientierung - Die Mathematik der Gitterzellen

21.12.2015

Neurowissenschaftler um Andreas Herz stellen eine Theorie vor, wie Gitterzellen im Gehirn räumliche Abstände repräsentieren. Ihre Ergebnisse deuten auf ein übergreifendes Kodierungsprinzip für verschiedene kognitive Prozesse hin.

Bei der räumlichen Orientierung von Säugetieren spielen Gitterzellen im Gehirn eine entscheidende Rolle. Bewegt sich das Tier im Raum, werden diese Zellen mehrfach nacheinander aktiviert, und zwar so, dass für jede Zelle ein virtuelles hexagonales Gitter entsteht, das die Umgebung des Tieres überspannt.

Die Regelmäßigkeit der Gitter lässt vermuten, dass damit Abstände wie in einem Koordinatensystem gemessen werden – die neuronale Metrik des Raums. Bei der Verleihung des Nobelpreises an May-Britt und Edvard Moser, die Entdecker der Gitterzellen, und John O’Keefe, war deshalb sogar von einem biologischen „GPS-System“ die Rede.

Andreas Herz, Professor für Computational Neurosciences an der LMU und Sprecher des Bernstein Zentrums, Dr. Martin Stemmler aus seiner Arbeitsgruppe und Dr. Alexander Mathis (Harvard University) stellen nun eine umfassende mathematische Theorie vor, die zeigt, wie das Gehirn die Informationen der Gitterzellen und damit räumliche Abstände auslesen kann.

Bisherige Interpretation widerlegt

Die Neurowissenschaftler wenden dabei erstmals das Konzept der sogenannten neuronalen Populationsvektor-Dekodierung auf Gitterzellen an. Dieses Prinzip ist unter anderem bei der Dekodierung motorischer Signale seit Langem bekannt. Verschiedene Nervenzellen antworten auf denselben Eingangsreiz mit unterschiedlicher Aktivität. „Kombiniert man diese Aktivitäten wie geometrische Vektoren, kann aus der Antwort der gesamten Neuronenpopulation ein breites Spektrum an Reizen mit hoher Genauigkeit dekodiert werden“, erläutert Martin Stemmler.

Dies ist aber nur möglich, wenn winkelartige Größen vorliegen, wie beispielsweise die Richtung einer Armbewegung. „Die Position eines Tieres ist aber keine periodische Größe“, sagt Alexander Mathis. „Deshalb kodieren Gitterzellen den physikalischen Raum wie auf einem Kreis beziehungsweise einem Donut aufgewickelt, sodass eine Dekodierung mit Populationsvektoren wieder möglich ist.“

Wegen dieses „Wickeltricks“ kann aus der Aktivität einzelner Gitterzellen nicht eindeutig auf die Raumposition zurückgeschlossen werden, vielmehr sind mehrere Gruppen von Zellen mit unterschiedlichem Gitterabstand nötig. Damit konnten die Forscher auch erklären, warum Gitterzellen in Module gruppiert sind, innerhalb derer die Gitter zwar verschoben sind, aber gleiche Orientierung und Größenskala haben.

Um die Präzision der Ortsbestimmung zu optimieren, sollten die Skalen in einem festen Verhältnis zueinander stehen, wie dies bereits experimentell beobachtet wurde. Das gemessene Skalenverhältnis von 3 zu 2 wird ebenfalls durch die neue Theorie erklärt: Bei diesem Wert sind großräumige Navigationsfehler sehr unwahrscheinlich.

Die Erkenntnisse der Forscher widerlegen die bisherige Annahme, wonach einzelne Gitterzellen räumliche Abstände wie in einem Koordinatensystem messen. „Ein Mythos“, sagt Andreas Herz. „Eine Metrik kann überhaupt erst dann entstehen, wenn unterschiedliche Gitterzellen gemeinsam ausgelesen werden.“

Auch in der aktuellen fachwissenschaftlichen Debatte, ob Gitterzellen überhaupt eine neuronale Metrik des Raums darstellen können, da doch Gitterfelder in schmalen Umgebungen verzerrt sind, liefert die neue Theorie eine Antwort: „Die Anordnung der Gitter ist irrelevant. Entscheidend ist, dass die Dekodierung funktioniert. Dies tut sie auch bei Verzerrungen“, sagt Martin Stemmler.

Übergreifendes Prinzip

Aus der Populationsantwort der Gitterzellen lässt sich nicht nur die eigene Position im Raum bestimmen, sondern auch die Richtung und Entfernung zu einem Ziel. Würde man dabei vorübergehend einzelne Gittermodule ausschalten, so wären spezifische Fehler bei der Zielsuche zu erwarten. Dies soll in zukünftigen Experimenten überprüft werden.

„Unsere Arbeit weist auf ein übergreifendes Funktionsprinzip im Gehirn hin“, betont Andreas Herz. „Das lässt uns hoffen, dass mithilfe mathematischer Theorien trotz der Komplexität des Gehirns ein grundlegendes Verständnis kognitiver Prozesse möglich ist.“

Publikation:
Martin Stemmler, Alexander Mathis, Andreas V. M. Herz
Connecting multiple spatial scales to decode the population activity of grid cells
In: Science Advances 2015, doi: 10.1126/science.1500816

Kontakt:
Professor Andreas Herz
Inhaber des Lehrstuhls für Computational Neurosciences an der LMU
Tel: +49 (0)89 / 2180-74801
E-Mail: herz@bio.lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics