Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Räumliche Orientierung - Die Mathematik der Gitterzellen

21.12.2015

Neurowissenschaftler um Andreas Herz stellen eine Theorie vor, wie Gitterzellen im Gehirn räumliche Abstände repräsentieren. Ihre Ergebnisse deuten auf ein übergreifendes Kodierungsprinzip für verschiedene kognitive Prozesse hin.

Bei der räumlichen Orientierung von Säugetieren spielen Gitterzellen im Gehirn eine entscheidende Rolle. Bewegt sich das Tier im Raum, werden diese Zellen mehrfach nacheinander aktiviert, und zwar so, dass für jede Zelle ein virtuelles hexagonales Gitter entsteht, das die Umgebung des Tieres überspannt.

Die Regelmäßigkeit der Gitter lässt vermuten, dass damit Abstände wie in einem Koordinatensystem gemessen werden – die neuronale Metrik des Raums. Bei der Verleihung des Nobelpreises an May-Britt und Edvard Moser, die Entdecker der Gitterzellen, und John O’Keefe, war deshalb sogar von einem biologischen „GPS-System“ die Rede.

Andreas Herz, Professor für Computational Neurosciences an der LMU und Sprecher des Bernstein Zentrums, Dr. Martin Stemmler aus seiner Arbeitsgruppe und Dr. Alexander Mathis (Harvard University) stellen nun eine umfassende mathematische Theorie vor, die zeigt, wie das Gehirn die Informationen der Gitterzellen und damit räumliche Abstände auslesen kann.

Bisherige Interpretation widerlegt

Die Neurowissenschaftler wenden dabei erstmals das Konzept der sogenannten neuronalen Populationsvektor-Dekodierung auf Gitterzellen an. Dieses Prinzip ist unter anderem bei der Dekodierung motorischer Signale seit Langem bekannt. Verschiedene Nervenzellen antworten auf denselben Eingangsreiz mit unterschiedlicher Aktivität. „Kombiniert man diese Aktivitäten wie geometrische Vektoren, kann aus der Antwort der gesamten Neuronenpopulation ein breites Spektrum an Reizen mit hoher Genauigkeit dekodiert werden“, erläutert Martin Stemmler.

Dies ist aber nur möglich, wenn winkelartige Größen vorliegen, wie beispielsweise die Richtung einer Armbewegung. „Die Position eines Tieres ist aber keine periodische Größe“, sagt Alexander Mathis. „Deshalb kodieren Gitterzellen den physikalischen Raum wie auf einem Kreis beziehungsweise einem Donut aufgewickelt, sodass eine Dekodierung mit Populationsvektoren wieder möglich ist.“

Wegen dieses „Wickeltricks“ kann aus der Aktivität einzelner Gitterzellen nicht eindeutig auf die Raumposition zurückgeschlossen werden, vielmehr sind mehrere Gruppen von Zellen mit unterschiedlichem Gitterabstand nötig. Damit konnten die Forscher auch erklären, warum Gitterzellen in Module gruppiert sind, innerhalb derer die Gitter zwar verschoben sind, aber gleiche Orientierung und Größenskala haben.

Um die Präzision der Ortsbestimmung zu optimieren, sollten die Skalen in einem festen Verhältnis zueinander stehen, wie dies bereits experimentell beobachtet wurde. Das gemessene Skalenverhältnis von 3 zu 2 wird ebenfalls durch die neue Theorie erklärt: Bei diesem Wert sind großräumige Navigationsfehler sehr unwahrscheinlich.

Die Erkenntnisse der Forscher widerlegen die bisherige Annahme, wonach einzelne Gitterzellen räumliche Abstände wie in einem Koordinatensystem messen. „Ein Mythos“, sagt Andreas Herz. „Eine Metrik kann überhaupt erst dann entstehen, wenn unterschiedliche Gitterzellen gemeinsam ausgelesen werden.“

Auch in der aktuellen fachwissenschaftlichen Debatte, ob Gitterzellen überhaupt eine neuronale Metrik des Raums darstellen können, da doch Gitterfelder in schmalen Umgebungen verzerrt sind, liefert die neue Theorie eine Antwort: „Die Anordnung der Gitter ist irrelevant. Entscheidend ist, dass die Dekodierung funktioniert. Dies tut sie auch bei Verzerrungen“, sagt Martin Stemmler.

Übergreifendes Prinzip

Aus der Populationsantwort der Gitterzellen lässt sich nicht nur die eigene Position im Raum bestimmen, sondern auch die Richtung und Entfernung zu einem Ziel. Würde man dabei vorübergehend einzelne Gittermodule ausschalten, so wären spezifische Fehler bei der Zielsuche zu erwarten. Dies soll in zukünftigen Experimenten überprüft werden.

„Unsere Arbeit weist auf ein übergreifendes Funktionsprinzip im Gehirn hin“, betont Andreas Herz. „Das lässt uns hoffen, dass mithilfe mathematischer Theorien trotz der Komplexität des Gehirns ein grundlegendes Verständnis kognitiver Prozesse möglich ist.“

Publikation:
Martin Stemmler, Alexander Mathis, Andreas V. M. Herz
Connecting multiple spatial scales to decode the population activity of grid cells
In: Science Advances 2015, doi: 10.1126/science.1500816

Kontakt:
Professor Andreas Herz
Inhaber des Lehrstuhls für Computational Neurosciences an der LMU
Tel: +49 (0)89 / 2180-74801
E-Mail: herz@bio.lmu.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie