Rätsel gelöst: Wie Gene gezielt abgeschaltet werden

Wissenschaftler im Deutschen Krebsforschungszentrum entdecken erstmals, wie diese Markierungen an genau die richtige Stelle im Erbgut platziert werden. Entscheidende Mitspieler sind regulatorische RNA-Moleküle.

Deren Sequenz passt genau zum Erbgutbereich, der markiert werden soll. RNA und DNA bilden an dieser Stelle eine zopfartige Dreifach-Helix, die als Wegweiser für die Markierungen dient.

Unser Erbgut wird oft mit einem Buch verglichen. Allerdings gleicht es nicht einem Roman, der am Stück zu lesen ist, sondern eher einem Kochbuch: Die Zelle liest immer nur diejenigen Rezepte, die gerade zubereitet werden sollen. Die Kochrezepte entsprechen den Genen. „Lesen“ im Buch der Zelle bedeutet, von einzelnen Genen RNA-Abschriften zu fertigen, die dann in Proteine übersetzt werden.

Mit hochkomplexen, ausgeklügelten Regulationsmechanismen stellt die Zelle sicher, dass nicht alle Gene gleichzeitig gelesen werden: Bestimmte Genschalter müssen aktiviert werden, zusätzlich bestimmen chemische Markierungen an der DNA, welche Gene in RNA umgeschrieben werden sollen und welche dagegen unzugänglich sind – dort bleibt das Buch buchstäblich zugeklappt. Biologen bezeichnen dies als epigenetische Genregulation.

Zu den gut untersuchten epigenetischen Mechanismen gehört, Gene mit Methylverbindungen stillzulegen. Das erledigen spezialisierte Enzyme, die Methyltransferasen, die an bestimme „Buchstaben“ der Gene Methylmarkierungen anheften und damit das ganze Gen unzugänglich machen. „Eines der großen Rätsel der modernen Molekularbiologie ist: Woher wissen die Methyltransferasen, wo sie ihre Markierung anbringen müssen, um gezielt ein bestimmtes Gen zu inaktivieren?“, erklärt Professor Dr. Ingrid Grummt aus dem Deutschen Krebsforschungszentrum ihr Forschungsgebiet.

Die Wissenschaftlerin ist der Lösung dieses Rätsels einen großen Schritt näher gekommen. Sie erforscht vor allem solche Textpassagen im Erbgut, die gar keine Rezepte enthalten. Trotzdem werden diese Texte auf kontrollierte Weise in RNA-Moleküle umgeschrieben. „Diese so genannten nicht-kodierenden RNAs enthalten keine Proteinrezepte. Sie sind wichtige Regulatoren in der Zelle, die wir gerade erst zu verstehen beginnen“, so Ingrid Grummt.

In ihrer neuen Arbeit beweisen Grummt und ihre Mitarbeiter erstmals, dass die epigenetische Regulation und die Steuerung durch nichtkodierende RNAs ineinandergreifen. Schleusen sie das nichtkodierende RNA-Molekül „pRNA“ künstlich in Zellen ein, so wird ein bestimmter Genschalter mit Methylmarkierungen versehen und die dahinter liegenden Gene werden nicht abgelesen. Der Trick bei der Sache: pRNA passt genau („komplementär“) zur DNA-Sequenz dieses Genschalters. Die Wissenschaftler fanden heraus, dass pRNA mit den beiden DNA-Strängen im Bereich dieses Genschalters eine Art Zopf bzw. Dreifach-Helix bildet. Methyltransferasen wiederum können spezifisch an diesen Zopf andocken und werden dadurch genau an die Stelle dirigiert, wo ein Gen blockiert werden soll.

Über die Hälfte unseres Erbguts wird in nichtkodierende RNA-Moleküle überschrieben. Das lässt Ingrid Grummt spekulieren: „Es ist durchaus denkbar, dass für alle Gene, die zeitweise stillgelegt werden, passgenaue nichtkodierende RNA-Moleküle vorhanden sind. Das würde erklären, wie eine solche Vielzahl an Genen gezielt an- und abgeschaltet werden kann.

Kerstin-Maike Schmitz, Christine Mayer, Anna Postepska und Ingrid Grummt: Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes & Development 2010, DOI: 10.1101/gad.590910

Das Deutsche Krebsforschungszentrum (DKFZ) ist die größte biomedizinische Forschungseinrichtung in Deutschland und Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren. Mehr als 2.200 Mitarbeiter und Mitarbeiterinnen, davon über 1000 Wissenschaftler, erforschen die Mechanismen der Krebsentstehung und arbeiten an der Erfassung von Krebsrisikofaktoren.

Sie liefern die Grundlagen für die Entwicklung neuer Ansätze in der Vorbeugung, Diagnose und Therapie von Krebserkrankungen. Daneben klären die Mitarbeiter und Mitarbeiterinnen des Krebsinformationsdienstes (KID) Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert.

Media Contact

Dr. Stefanie Seltmann idw

Weitere Informationen:

http://www.dkfz.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer