Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rabiate Zellen auf Wanderschaft

06.09.2016

Wenn Zellen wachsen und sich vermehren, treten sie mit anderen Zellen in Kontakt. Das ist bei der Entwicklung, der Regeneration oder nach Verletzungen so, doch auch beim Krebswachstum und der Metastasenbildung. Bei diesen Zellkontakten tauschen die Zellen Informationen über Proteine ihrer Zellmembranen aus. Wollen die Zellen ein abstoßendes Signal übermitteln, müssen die gebildeten Proteinkomplexe zwischen den beiden Zellen wieder getrennt werden. Dies geht anscheinend am schnellsten, wenn eine Zelle den Proteinkomplex aus der Membran der Nachbarzelle verschluckt. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried zeigen nun, welche Moleküle diesen Vorgang steuern.

Entwicklung ist ein rasanter Prozess. Immer mehr Zellen entstehen und müssen ihre Position im Körper finden, sich gegeneinander abgrenzen, um Gewebe zu bilden, oder, wie im Fall des Nervensystems, weit entfernte Partnerzellen kontaktieren. „Zu dem Gedränge kommt ein ordentliches Geschubse“, sagt Rüdiger Klein, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Zellen sich zurechtfinden.


Die stabilen Proteinkomplexe (gelb) zwischen zwei Zellen werden zum Trennen der Zellen mit Hilfe des Signalproteins Tiam in eine der Zellen hineingezogen (gelbe Punkte in der roten Zelle).

MPI für Neurobiologie / Gaitanos

„Eine beliebte Methode, einer anderen Zelle die Richtung zu weisen, ist das Wegstoßen nach kurzem Kontakt.“ Nach Beobachtung der Wissenschaftler gehen die Zellen dabei nicht gerade zimperlich miteinander um und verschlucken sogar ganze Stücke aus der Membran der jeweils anderen Zelle.

Wenn Zellen miteinander in Kontakt treten, geschieht dies oft über Ephrine und Eph-Rezeptoren. Diese Proteine befinden sich auf der Oberfläche fast aller Zellen. Treffen zwei Zellen aufeinander, verbinden sich ihre Ephrine und Eph-Rezeptoren zu festen Ephrin/Eph-Komplexen. Diese Komplexe setzen daraufhin über Signalketten den Abstoßungsprozess in Gang.

„Nun kommt das Problem, denn anscheinend wollen sich die Zellen dann so schnell wie möglich trennen – doch durch die stabilen Ephrin/Eph-Komplexe hängen die beiden Zellen aneinander“, erklärt Rüdiger Klein. Also machen die Zellen etwas anderes: Sie stülpen die eigene Zellmembran so weit über die einzelnen Komplexe, bis sich der Komplex samt angrenzender Membran aus der Nachbarzelle herauslöst und ganz in die Zelle aufgenommen wird.

Dass Zellen diesen als Endozytose bekannten Vorgang nutzen können, um sich voneinander zu trennen, fanden die Max-Planck-Forscher bereits 2003 heraus. Fortschritte in der Molekularbiologie haben es ihnen nun ermöglicht zu zeigen, wie der Vorgang im Detail gesteuert wird.

Mit einer Reihe genetischer Modifikationen und dem gezielten Ausschalten einzelner Zellkomponenten konnten die Wissenschaftler zeigen, dass durch die Bildung des Ephrin/Eph-Komplexes Tiam-Signalproteine aktiviert werden. Als Folge werden Rac-Enzyme aktiv, die wiederum durch eine lokale Umstrukturierung des Aktin-Zellskeletts zum Ausstülpen der Zellmembran über den Ephrin/Eph-Komplexe führen. Fehlt eine dieser Komponenten, ist die Aufnahme des Komplexes durch Endozytose blockiert, und somit können die Zellen sich nicht abstoßen und hängen aneinander fest.

Die Aufklärung dieses Signalwegs ist wichtig, um die Entwicklung von neuronalen Netzwerken und anderen Organsystemen besser zu verstehen. Das Ergebnis ist jedoch auch für die Krebsforschung sehr interessant: Ephrine und Eph-Rezeptoren spielen durch ihre Fähigkeit, die Zellabstoßung zu steuern, eine große Rolle beim Eindringen von Krebszellen in Gewebe und der Metastasenbildung.

Daher stehen die Rezeptoren und ihre Bindungspartner im Fokus aktueller medizinischer Forschung. Sind die Komponenten des Signalweges bekannt, über den die Zellabstoßung gelenkt wird, könnten sich daraus neue Ansatzpunkte für Therapeutika entwickeln.

ORIGINALVERÖFFENTLICHUNG

Thomas N. Gaitanos, Jorg Koerner, Rüdiger Klein
Tiam/Rac signaling mediates trans-endocytosis of ephrin receptor EphB2 and is important for cell repulsion
Journal of Cell Biology, 5. September 2016

KONTAKT

Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Rüdiger Klein
Abteilung "Moleküle – Signale – Entwicklung"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3150
Email: rklein@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/klein/de - Webseite der Abteilung von Prof. Rüdiger Klein

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften