Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Raben können sich in die Sichtweise ihrer Artgenossen hineinversetzen

03.02.2016

Sind nicht nur Menschen zu einer "Theory of Mind" fähig?

Raben stellen sich vor, was andere Raben sehen können: Zu diesem Ergebnis kommen die Kognitionsbiologen Thomas Bugnyar und Stephan Reber von der Universität Wien gemeinsam mit dem Philosophen Cameron Buckner (University of Houston, Texas).


Forscher der Universität Wien testeten die Fähigkeit von Raben, sich in andere hineinzuversetzen.

Copyright: Jana Müller, Universität Wien


Raben versteckten ihr Futter nur dann gut, wenn dominante Artgenossen im Nachbarraum sichtbar und gleichzeitig hörbar waren.

Copyright: Jana Müller, Universität Wien

Bugnyar und sein Team konnten dies in einem Experiment erstmals belegen und leisten damit einen wichtigen Beitrag in der aktuellen Debatte, ob außer Menschen auch Tiere zu einer so genannten "Theory of Mind" fähig sind. Sie publizieren dazu in der Fachzeitschrift "Nature Communications".

ForscherInnen versuchen seit Jahren in diversen Studien, die "Theory of Mind" bei Tieren, vor allem bei Schimpansen und Rabenvögeln, nachzuweisen. Das Problem all dieser Arbeiten war aber bislang, dass sich die Tiere an der Kopf- oder Augenbewegung von Artgenossen orientieren konnten.

Die vorliegende Studie kann erstmals diesen Einwand entkräften: Thomas Bugnyar vom Department für Kognitionsbiologie an der Universität Wien und seine Kollegen testeten die Fähigkeit von Raben, sich in andere hineinzuversetzen, indem sie deren Konkurrenz um verstecktes Futter nutzten. In einem ersten Schritt wiesen sie nach, dass Raben Futter nur dann gut versteckten, wenn dominante Artgenossen im Nachbarraum sichtbar und gleichzeitig hörbar waren.

In einem zweiten Schritt wurde den Raben ein Guckloch gezeigt, dass ihnen erlaubte, in den Nachbarraum zu spähen. Falls dieses Guckloch in der Folge offen war und die Raben vom Nachbarraum Laute von anderen Raben hörten, versteckten sie ihr Futter in der gleichen Weise, als ob ihre Artgenossen sichtbar waren. Da die Anwesenheit von Artgenossen beim offenen Guckloch über Playback simuliert wurde, konnten die Raben definitiv nicht das Verhalten von Artgenossen beurteilen. Trotzdem agierten sie, als ob sie beobachtet werden.

"Unsere Studie zeigt, dass Raben ihr Futter nur dann gut verstecken, wenn sie andere Raben im benachbarten Raum hören und wenn ein Guckloch zu diesem Raum offen ist. Da die Raben in diesem Fall keine Artgenossen sehen können, sie aber trotzdem reagieren, als ob sie gesehen werden, kann ihr Verhalten nur über ein Verständnis der Sichtweise der anderen erklärt werden", erläutert Thomas Bugnyar.

"Die Ergebnisse legen nahe, dass Raben die akustische Information über die Anwesenheit anderer Raben mit ihrer eigenen Erfahrung, dass man durch das Guckloch schauen kann, geistig verbinden können, was mit einer der gängigen Hypothesen übereinstimmt, wie 'Theory of Mind' funktionieren könnte", so Bugnyar weiter. "Die Arbeit zeigt auch, wie fruchtbar Diskussionen mit Kollegen von anderen Disziplinen sein kann", ergänzt der Kognitionsbiologe, "da die Idee zu dieser Studie erst durch regelmäßige Treffen mit Philosophen, vor allem unserem Koautor Cameron Buckner, zustande gekommen ist".

Publikation in "Nature Communications"
Thomas Bugnyar, Stephan A. Reber & Cameron Buckner: "Ravens attribute visual access to unseen competitors". Published online February 2, 2016.
Doi: 10.1038/ncomm10506

Wissenschaftlicher Kontakt
Univ.-Prof. Mag. Dr. Thomas Bugnyar
Department für Kognitionsbiologie
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-761 12
M +43-664-60277-761 12
thomas.bugnyar@univie.ac.at

Rückfragehinweise
Stephan Brodicky
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 41
stephan.brodicky@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feierte die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Berichte zu: Augenbewegung Kognitionsbiologie Nature Communications Raben

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie