Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Schalter" für Wachstum von Blutgefäßen identifiziert

12.06.2009
Entdeckter Steuermechanismus des Gefäßwachstums reagiert auf zwei Proteine, die das Wachstum "ein-" oder "ausschalten" können

Nichts im menschlichen Körper funktioniert ohne Blutgefäße, die in einem verzweigten Netzwerk Sauerstoff und Nährstoffe in alle Organe transportieren. Bei Bedarf wird dieses Netz durch neue Verzweigungen erweitert, z. B. beim Wachstum oder der Wundheilung. Das Sprossen neuer Verzweigungen muss aber im ausgewogenen Verhältnis zum Erhalt des bestehenden Gefäßnetzes erfolgen. Mangelnde und übermäßige Bildung neuer Blutgefäße führt zu schweren Gesundheitsschäden. Auch Tumore nutzen das Wachstum der Gefäße für ihre eigene Versorgung. Münsteraner Forscher haben jetzt entdeckt, wie das Zusammenwirken zweier Proteine mit gegensätzlicher Funktion für das notwendige Gleichgewicht bei der Bildung neuer Gefäßverzweigungen sorgt. Die Abteilung um Ralf H. Adams, der zugleich Professor der Westfälischen Wilhelms-Universität Münster und Direktor am Max-Planck-Institut für molekulare Biomedizin ist, konnte zeigen, dass das Wachstum von Blutgefäßen wie mit einem Schalter an- oder abgeschaltet werden kann. Dieser Mechanismus könnte neue Möglichkeiten zur Behandlung von Gefäß- und Krebserkrankungen eröffnen. (Cell, 12. Juni 2009)


Ein Netzwerk aus Blutgefäßen
Bild: MPI für molekulare Biomedizin / Rui Benedito

An Beispielen wie Schlaganfall oder Herzkranzgefäßerkrankungen kann man leicht erkennen, wie wichtig die Transportfunktion von Blutgefäßen für unsere Gesundheit ist. Forscher suchen daher seit Jahrzehnten nach Möglichkeiten, die Neubildung von Gefäßen und damit auch die Reparatur von Organschäden gezielt anzuregen. Umgekehrt gibt es aber auch unerwünschte Effekte durch die Bildung neuer Blutgefäße, die beispielsweise die Ausbreitung von Krebserkrankungen fördern oder bei Diabetikern zum Verlust des Sehvermögens führen können. Die Therapie verschiedener Krankheiten erfordert also ein Verfahren mit dem Neuverzweigungen im Gefäßnetzwerk je nach Bedarf stimuliert oder blockiert werden können.

Den Forschern des Max-Planck-Instituts in Münster ist es nun erstmals gelungen, einen "An- und Ausschalter" des Gefäßwachstums zu identifizieren. Der "Schalter" ist ein Rezeptor mit dem Namen ‚Notch’, der auf der Oberfläche der Blutgefäßzellen, so genannter Endothelzellen, sitzt. An diesen Rezeptor können verschiedene Oberflächenproteine andocken, die den "Schalter" entweder auf "Ein" oder auf "Aus" stellen. Ist die Zelle "eingeschaltet", ist sie für den Wachstumsfaktor VEGF empfänglich, der den "Befehl" zur Zellteilung und damit zum Wachstum einer neuen Ader führt. Die einzelnen Komponenten dieses biochemischen Mechanismus waren bereits bekannt. Den Notch-Rezeptor (Schalter), das Oberflächenprotein Delta-like 4, kurz Dll4 (Aus), und den Wachstumsfaktor VEGF (Befehl zur Zellteilung) kannten die Forscher bereits aus früheren Experimenten. Auch das Protein ‚Jagged1’, das den "Schalter" auf die Position "Ein" bewegt, war bekannt. Es handelt sich dabei ebenfalls um ein Oberflächenprotein, also ein Eiweiß, das auf der Außenseite der Zellen sitzt und in Kontakt zu Notch-Rezeptoren benachbarter Zellen treten kann.

"Wir haben jetzt erstmals verstanden, wie diese einzelnen Komponenten zusammen wirken. Dass das Protein Jagged1 in dem Zusammenhang als "Einschalter" wirkt, ist eine völlig neue Erkenntnis. In anstehenden Versuchen an Mäusen wollen wir lernen, das Gefäßwachstum, ähnlich wie es in Zukunft einmal Medikamente beim Menschen leisten könnten, aktiv zu steuern", erklärt Professor Dr. Ralf H. Adams.

Die Hemmung des Wachstumsfaktors VEGF (engl. ‘Vascular Endothelial Growth Factor’) wird bereits seit einigen Jahren bei der Behandlung von Krebspatienten und bestimmten Augenerkrankungen eingesetzt. Leider ist diese Therapie sehr teuer und nur bei einem Teil der Patienten erfolgreich. "Da VEGF auch die Durchlässigkeit von Gefäßen erhöht und dadurch zu Blutungen führt, kann dieser Faktor nicht zur therapeutischen Förderung des Gefäßwachstums eingesetzt werden. Mit der Aufklärung der Funktion von Jagged1 hoffen wir, nun eine echte Alternative für zukünftige Therapieansätze gefunden zu haben", ergänzt Dr. Rui Benedito, Zellbiologe der Abteilung Gewebebiologie und Morphogenese am Max-Planck-Institut.

"Neben der Wirksamkeit wird aber auch die Verträglichkeit dieses Ansatzes zunächst gründlich geprüft werden müssen", erläutern Adams und Benedito und warnen damit zugleich vor übertriebener Hoffnung auf baldige Therapieansätze. "Notch, Dll4 und Jagged1 haben auch in anderen Organen und Zelltypen wichtige Aufgaben. Das macht eine Beschränkung der Wirkung auf Blutgefäßzellen anspruchsvoll. Wir hoffen dennoch, dass unsere Arbeit zur Entwicklung neuer Medikamente führen wird."

Die Studie erfolgte in Zusammenarbeit mit Professor Dr. Achim Gossler (Medizinische Hochschule Hannover) und war von Rui Benedito und Ralf Adams bei Cancer Research UK in London vor ihrem Umzug nach Münster (2008) begonnen worden. Die ausgezeichneten Arbeitsbedingungen am Max-Planck-Institut und die enge Zusammenarbeit mit der Westfälischen Universität Münster nennt Adams als wichtige Faktoren für die erfolgreiche Forschungsarbeit seiner Gruppe.

[MK/BA]

Originalveröffentlichung:

Rui Benedito, Cristina Roca, Inga Sörensen, Susanne Adams, Achim Gossler, Marcus Fruttiger, Ralf H. Adams
The Notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis
Cell, 12. Juni 2009, doi:10.1016/j.cell.2009.03.025
Weitere Informationen erhalten Sie von:
Dr. Jeanine Müller-Keuker, PR-Referentin
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel.: +49 251 70365-325
E-Mail: presse@mpi-muenster.mpg.de
Professor Dr. Ralf H. Adams
Max-Planck-Institut für molekulare Biomedizin, Münster
Tel.: +49 251 70365-400
E-Mail: ralf.adams@mpi-muenster.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften