Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Schalter aus, Licht an": Molekularbiologin entdeckt neuen Mechanismus zur Steuerung von Zellsignalen

16.02.2009
Manuela Baccarini vom Zentrum für Molekulare Biologie der Universität Wien (Max F. Perutz Laboratories) untersucht eine Gruppe von Proteinen, die wichtig für die Zellteilung und damit auch für unkontrolliertes Zellwachstum wie bei der Entstehung von Krebs ist.

Einige Experimente dazu brachten sie und ihr Team nun auf eine ganz unerwartete Spur: Sie entdeckten einen bisher unbekannten Regulationsmechanismus der MEK-Enzyme, der Schlüsselelemente des MAP-Kinase-Signalwegs. Die Ergebnisse dieses FWF-Projekts sind in der Fachzeitschrift "Nature Structural & Molecular Biology" nachzulesen.

Der MAP-Kinase-Signaltransduktionsweg spielt eine wichtige Rolle in der Embryonalentwicklung, sowie bei der Differenzierung, dem Wachstum und dem programmierten Zelltod von menschlichen Zellen.

"Die Enzyme Raf/MEK/ERK sind wichtig für die Zellteilung und damit auch für unkontrolliertes Zellwachstum, wie es bei Krebserkrankungen auftritt. Durch die gezielte Zerstörung von Genen dieser Enzyme können wir gewollte Defekte in bestimmten Geweben und deren molekulare Ursachen untersuchen", sagt Manuela Baccarini von den Max F. Perutz Laboratories der Universität Wien.

Eine Besonderheit des MAP-Signalwegs ist, dass zur Regulation an einigen Schlüsselstellen mehrere Enzyme mit der scheinbar selben Funktion vorhanden sind. Baccarinis Gruppe wählte für ihre Experimente die beiden Enzyme MEK1 und MEK2, Schwesterenzyme, die an derselben Stelle des Signalweges eine Rolle spielen. "Wir wollten wissen, was auf molekularer Ebene in der Zelle passiert, wenn wir dieses für die embryonale Entwicklung absolut notwendige Enzym MEK1 ausschalten", erklärt Baccarini.

Die Ergebnisse waren jedoch mehr als überraschend. "Wir hätten erwartet, dass sozusagen kein Licht brennt, wenn der Schalter ausgeschaltet ist. Doch genau das Gegenteil trat ein: Der Lichtschalter, also das Gen für MEK1, war abgeschaltet, das Schwesternenzym MEK2 war jedoch besonders aktiv und nicht wie erwartet ebenso abgeschaltet. Zellteilung und Wachstum als Folge der ungestörten, ja sogar gesteigerten Signalweiterleitung liefen auf vollen Touren."

Baccarinis Arbeiten zeigen, dass die Enzyme MEK1 und MEK2 zwar eine ähnliche, aber nicht wie bisher angenommen die gleiche Funktion in der Signalweiterleitung ausüben. Ein weiteres Ergebnis: die beiden Schwesterenzyme sind als zusammenhängender Komplex (Heterodimer) funktionstüchtig. Ist der eine Teil des Doppelpacks (MEK1) zerstört, kann MEK2 nicht mehr abgeschaltet werden. Die Regulation an dieser Schlüsselstelle läuft also über eine sogenannte negative Feedback-Schleife.

Entwicklung neuer Therapieansätze
Störungen des MAP-Kinase-Wegs im Menschen sind bereits bekannt, sie äußern sich etwa im sogenannten Noonan-Syndrom oder Leopard-Syndrom. Die Betroffenen zeigen unter anderem Fehlbildungen im äußeren Erscheinungsbild, Herzerkrankungen und ein erhöhtes Krebsrisiko. "Ein besseres Verständnis dieser Regulationsmöglichkeiten ist unerlässlich für die Entwicklung neuer Therapieansätze", sagt die Forscherin.

Baccarini selbst konzentriert sich in weiteren Projekten auf die Untersuchung des MAP-Kinase-Wegs und seinen Einfluss auf Krebsentstehung. Eine andere essentielle Aufgabe: Mit der Leitung des vom FWF finanzierten "Doktoratskollegs Plus" zum Thema Signaltransduktion wird Manuela Baccarini und die teilnehmenden Forschungsgruppen der Max Perutz Labs die Ausbildung des wissenschaftlichen Nachwuchses auf höchstem internationalem Niveau ermöglicht.

Die Max F. Perutz Laboratories sind ein 2005 gegründetes Joint-Venture der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. Diese inter-universitäre Kooperation ist ein neuer und innovativer Ansatz um Forschung und Lehre an beiden Universitäten zu stärken. Am Institut in der Bohr-Gasse forschen 60 Arbeitsgruppen im Bereich Molekularbiologie. Seit 2007 leitet der Biochemiker Graham Warren das Institut: www.mfpl.ac.at

Originalpublikation:
Catalanotti F, Reyes G, Jesenberger V, Galabova-Kovacs G, de Matos Simoes R, Carugo O, and Baccarini M: "A MEK1-MEK2 heterodimer determines the strength and duration of the ERK signal" in: Nature Structural & Molecular Biology,

http://www.nature.com/nsmb/journal/vaop/ncurrent/pdf/nsmb.1564.pdf

Kontakt:
Ao. Univ.-Prof. Mag. Dr. Manuela Baccarini
Max F. Perutz Laboratories
Dr. Bohr-Gasse 9
1030 Wien
T +43-1-4277-54607
manuela.baccarini@univie.ac.at
http://www.mfpl.ac.at/index.php?cid=75
Rückfragehinweis:
Dr. Lisa Cichocki
Communications
Max F. Perutz Laboratories
Dr. Bohr-Gasse 9
1030 Wien
T +43-1-4277-24014
lisa.cichocki@mfpl.ac.at
www.mfpl.ac.at
Mag. Alexandra Frey
Öffentlichkeitsarbeit
Universität Wien
Dr.-Karl-Lueger-Ring 1
1010 Wien
T +43-1-4277-175 31
alexandra.frey@univie.ac.at
www.univie.ac.at/175

Alexandra Frey | idw
Weitere Informationen:
http://www.univie.ac.at/175
http://www.mfpl.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie