Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der "Sandfisch" als Vorbild für Förder- und Prozesstechniker

01.10.2008
Er bewegt sich im Sand so schnell wie ein Fisch im Wasser. Der Apothekerskink (lat. Scincus scincus) - im allgemeinen "Sandfisch" - genannt, ist eine etwa 15 Zentimeter lange Echse, die in den Wüsten Nordafrikas und des Nahen Ostens lebt.

Förder- und Prozesstechniker könnten von dem unscheinbaren Wüstentier lernen. Denn die Echse, die sich vorwiegend unter der Sandoberfläche aufhält, zeigt, wie man sich äußerst energieeffizient in diesem Element bewegt. Die Erkenntnisse aus der Natur sind auf industrielle Fördertechniken granulärer Materialien übertragbar. Ob Kies, Sand oder Mehl: Grubenbesitzer und Großbäckereien könnten mit optimierter Fördertechnik künftig energieeffizienter, wartungsärmer und damit auch kostengünstiger arbeiten.

Univ.-Prof. Dr.techn. Werner Baumgartner vom Lehr- und Forschungsgebiet Zelluläre Neurobionik der RWTH Aachen und seinen Mitarbeitern ist es erstmals gelungen, dem wendigen Tier beim "Schwimmen" im Sand zuzuschauen. Dazu wurde die Wüstenechse in einem Kernspin-Tomographen beobachtet. "Wir befüllten einen runden Behälter mit Wüstensand, der exakt in die Kopfspule des Tomographen passte", erläutert der Biologieprofessor. In Kooperation mit Kollegen der Universität Würzburg und des Museums König in Bonn wurde die Echse und ihre Bewegungen im Sand sowohl von oben als auch von der Seite bildlich festgehalten. Das Erstaunen der Wissenschaftler war groß.

Im Gegensatz zu früheren Annahmen legte der Sandfisch seine Beine nicht an, sondern bewegte diese nach einem festen Schema vor und zurück. "Dies klingt zunächst unlogisch, da Sand Widerstand bietet", bestätigt Werner Baumgartner. "Aber wir fanden heraus, dass er die Beinbewegung sehr gut mit den Schlängelbewegungen des Körpers koordiniert." Das Prinzip ist einem kraulenden Schwimmer ähnlich. Bewegt sich der Kopf beziehungsweise Vorderkörper des Sandfisches beispielsweise nach links, entsteht rechts davon ein Bereich fließenden und damit sehr lockeren Sandes. Durch diesen kann die Echse ihr rechtes Vorderbein leicht nach vorn bewegen. Momente später bewegt sich der Vorderkörper wiederum nach rechts, so dass sich hier der Sand verdichtet. Die Echse ist nun in der Lage, ihr rechtes Vorderbein gut von diesem verfestigten Sand abzustoßen. Durch die prinzipiell gleichen, aber zeitversetzten Bewegungen der anderen Beine generiert der Sandfisch eine effektive und äußerst schnelle Bewegung nach vorn.

Interessanterweise konnten die Biologen nachweisen, dass der Sandfisch sich immer mit der gleichen Frequenz im Sand bewegt. "Durch das Schlängeln der Echse entsteht eine Vibration im Sand", erläutert Werner Baumgartner. "Unsere Untersuchungen zeigten: Die Schlängelbewegung läuft immer bei drei Hertz (drei Bewegungen pro Sekunde) ab." Die Vermutung lag nahe, dass sich die Tiere bei dieser Frequenz am kräftesparendsten fortbewegen können. Der Modellversuch bestätigte die Theorie. Hierfür wurde ein künstlich nachgebauter Sandfisch aus Aluminium auf einem Motor im Sand bei unterschiedlichen Frequenzen vor- und zurückbewegt. Das Ergebnis: Genau bei drei Hertz war die benötigte Kraft für die Fortbewegung am niedrigsten, da die umliegende Sandstruktur am lockersten war.

"Der Sandfisch hat in Millionen von Jahren gelernt, mit granulärem Material gut umzugehen", reflektiert der Aachener Neurobioniker. Die Erkenntnisse aus der Natur bergen viele Chance für innovative technische Anwendungen. "Mit Hilfe von Computer- und Rechenmodellen lassen sich beispielsweise ideale Transportfrequenzen für die unterschiedlichsten granulären Materialien errechnen", erklärt Werner Baumgartner. Förder- und Prozesstechniker können sich also etwas vom Sandfisch abschauen. Aber auch Baustatiker und -ingenieure profitieren von den neuen Erkenntnissen. So lassen sich etwa Erdanker bei Hoch- und Tiefbauten künftig mit optimal errechneten Frequenzen energieeffizient und damit kostensparend in granuläre Bodenschichten einbringen.

Weitere Informationen bei: Univ.-Prof. Dr. techn. Werner Baumgartner, Lehr- und Forschungsgebiet Zelluläre Neurobionik, E-Mail: werner@bio2.rwth-aachen.de, Tel. 0241/8024840

Thomas von Salzen | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie