Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das "Lernen können” im Alter ausgeschaltet wird

18.05.2010
Göttinger Neurowissenschaftler beschreiben erstmals, dass ein verändertes Zusammenspiel von Umwelt und Genom zum Verlust von Lernvermögen im Alter führt. Sie klären den Mechanismus auf und zeigen mögliche neue Wege zur Behandlung von Altersdemenz. Veröffentlicht in SCIENCE.

Geistig fit im hohen Alter, das ist ein besonderes Geschenk des Lebens. Altkanzler Helmut Schmidt (91) und Altpräsident Richard von Weizsäcker (90) sind Beispiele dafür, dass "geistige Fitness" bis ins hohe Alter möglich ist. Die meisten Menschen müssen sich mit zunehmendem Alter eher mit den Einschränkungen ihres Lernvermögens arrangieren.

Alter ist auch der wichtigste Risikofaktor für Alzheimer. Dabei ist in den wenigsten Fällen eine vererbte Form von Alzheimer der Grund dafür, sondern die "erworbene" Variante. Eine ursächliche Behandlung gibt es für beide Formen bislang nicht. Göttinger Neurowissenschaftler vom European Neuroscience Institut (ENI-G) zeigen jetzt neue Wege für eine mögliche Behandlung auf.

In ihrer neuesten Studie beschreibt das Forscherteam unter der Leitung von Dr. André Fischer erstmals, dass eine veränderte Umwelt-Genom-Interaktion zum Verlust von Lernvermögen im Alter führt, und sie klären den Mechanismus auf. Gefunden haben die Forscher eine Art Schalter für das "Lernen können". Dieser ist schon zu Beginn der zweiten Lebenshälfte "dereguliert" und damit quasi auf "Aus" gestellt. Das Forscherteam ist davon überzeugt, damit einen Ansatzpunkt für eine in der Zukunft mögliche "Pille gegen Altersdemenz" gefunden zu haben. Die Forschungsergebnisse der ENI-G-Forscher wurden am 7. Mai 2010 in dem international renommierten Wissenschaftsmagazin SCIENCE veröffentlicht.

Erst ein moderner Forschungsansatz hat den Göttinger ENI-Forschern zu den jüngsten Erkenntnissen verholfen. Dieser berücksichtigt Erkenntnisse der so genannten "Epigenetik". Danach beeinflussen vor allem Faktoren der Umwelt, ob und welche Gene des verfügbaren Erbguts "reguliert", das heißt ein- oder aus-, runter- oder hochgeschaltet, werden. Die vermittelnden Schaltstellen für diese "Umwelt-Genom-Interaktion" liegen nicht in den Genen oder der Erbsubstanz selbst, sondern in der dreidimensionalen Verpackungsstruktur der Gene.

Vermittelt wird die molekulare Interaktion zwischen Umwelt und Genom (der Erbsubstanz) von "Histonen" oder "Histonproteinen". Impulse aus der Umwelt bewirken an diesen Proteinen je nach Impuls unterschiedliche molekulare Veränderungen, so genannte "Modifikationen". Ein solcher wichtiger epigenetischer Mechanismus ist die "Histonacetylierung", wobei Acetyl-gruppen an bestimmte Stellen der Histone, angehängt werden. Genau diese "Histonacetylierung" spielt in den aktuellen Forschungsergebnissen der Göttinger Neurowissenschaftler eine zentrale Rolle.

"Probanden" der Studie waren Mäuse im Alter von 3 und 16 Monaten. Die Mäuse beider Altersstufen absolvierten die selben Tests zur Untersuchung von Gedächtnis und Lernfähigkeiten. Das besondere Interesse der Forscher galt dabei den Test-Ergebnissen der 16 Monate alten Mäusen. Sie sind das "Mausmodell" für den alternden Menschen im Alter um die 55 Jahre. Insgesamt zeigten die Tests: Alternde Mäuse zeigen in Gedächtnistests erste Anzeichen für einen Verlust von Lernfähigkeit.

In weiteren Untersuchungen konnten die Forscher zeigen, dass der Verlust von Lernfähigkeit bei alternden Mäusen gekoppelt ist mit einem nahezu kompletten Ausfall aller Gene, die beim Prozess "Lernen" eine Rolle spielen. Untersucht wurde hierbei eine bestimmte Hirnregion, der Hippokampus. Dieser ist bei Nagern wie beim Mensch wesentlich für das Lernvermögen. Zudem ist der Hippokampus die Hirnregion, die bei der Alzheimerdemenz als erste geschädigt wird. Während junge Mäuse während des Lernens über 1.500 hippokampale Gene angeschaltet hatten, lag die Zahl bei den alternden Mäusen von 16 Monaten bei nahezu "Null".

Was schaltet die Gene für "Lernen-können" im Alter komplett ab? "Solexa", ein neues Verfahren zur schnellen Sequenzierung ganzer Genome lieferte die Antwort. "Erstmals haben wir bewährte verhaltensbiologische Untersuchungstestverfahren zum Lernen mit modernen Verfahren der Genom-Sequenzierung kombiniert", sagt Dr. André Fischer. Mit Hilfe dieses Verfahrens gelang den Forschern nun der Blick auf Veränderungen an den Histonen und mögliche Unterschiede bei jungen und alternden Mäusen. Hier fanden sie den "Schalter", der die Lern-Gene in der alternden Maus abschaltet: "H4K12", das Histon 4, das normalerweise über eine Acetylierung an Position 12 verfügt, ist dereguliert. "Diese eine Veränderung hat bewirkt, dass keine Lern-Gene mehr aktiviert werden können. Unsere Forschungsergebnisse zeigen erstmals, dass es einen kausalen Zusammenhang zwischen epigenetischen Mechanismen und dem Verlust an Lernfähigkeit im Alter gibt", sagt Dr. André Fischer.

Die neuen Erkenntnisse eröffnen einen Weg für Behandlungsmöglichkeiten: "Wenn wir einen solchen Schalter wie H4K12 kennen, können wir uns gezielt auf die Suche nach Substanzen machen, um ihn wieder anzuschalten”, sagt Dr. Fischer. In früheren Studien haben die ENI-Forscher dafür bereits Erkenntnisse gewonnen. Danach lässt sich die Histonacytelierung auf künstliche Weise durch die Gabe von so genannten HDAC-Inhibitoren erreichen. Ein solche Substanz, die Suberolylanilid Hydroxamid Säure (SAHA), wird bereits in ähnlicher Funktion zur Behandlung bestimmter Krebsformen an Menschen eingesetzt.

Die neuen Erkenntnisse der Göttinger Neurowissenschaftler könnten vor allem bedeutsam werden für die Entwicklung von medikamentösen Behandlungsmöglichkeiten, die auf die molekularen Ursachen von neuronalen und neurodegenerativen Erkrankungen des Alters zielen. Viele Arbeiten weltweit haben bestätigt, dass die Modifizierung von Histonacetylierung, z.B. durch HDAC Inhibitoren, eine gute Strategie zur Behandlung von Altersdemenz oder Alzheimer darstellt. "Um den Schritt in die Klinik zu tun und Menschen zu behandeln, fehlen uns noch spezifische, sehr gezielt einsetzbare Wirkstoffe. Die derzeitigen HDAC-Inhibitoren sind unspezifisch und wirken nur grob in die richtige Richtung. Sie sind aber nicht geeignet, um die Acetylierung an nur einer bestimmten Position zu erreichen", sagt Dr. Fischer.

"Krankheiten wie Alzheimer sind in der Regel multifaktoriell. Das heißt: in der Regel tragen eine ganze Reihe von genetischen und umweltbedingten Risikofaktoren, wie z.B. das Alter, zur Krankheit bei. Alle Risikofaktoren auszuschalten ist schwierig", sagt Dr. André Fischer: "Wir gehen davon aus, dass verschiedenste Risikofaktoren zur ähnlichen Veränderungen der Histoneacetylierung führen. Wir nennen das eine "epigenetische Signatur". Diese kann als so etwas wie das Nadelöhr von dementiellen Erkrankungen angesehen werden. Eine solche epigenetische Signatur stellt demnach ein sehr gutes Ziel für eine Behandlung dar. Unsere neuesten Forschungsergebnisse zeigen, dass eine veränderte H4K12-acetylierung die epigenetische Signatur des alternden Hippokampus ist."

ORIGINALVERÖFFENTLICHUNG:
ALTERED HISTONE ACETYLATION IS ASSOCIATED WITH AGE-DEPENDENT MEMORY IMPAIRMENT IN MICE, Peleg, Sananbenesi, Zovoilis et al., SCIENCE, May 7th, 2010

http://www.sciencemag.org/cgi/content/abstract/328/5979/753

WEITERE INFORMATIONEN
European Neuroscience Institute Göttingen (ENI-G)
Nachwuchsgruppe Experimentelle Neuropathologie
Dr. André Fischer
Telefon +49 / 551 / 39-10378
afische2@gwdg.de
Grisebachstr. 5, D-37077 Göttingen

Stefan Weller | idw
Weitere Informationen:
http://www.gwdg.de
http://www.sciencemag.org/cgi/content/abstract/328/5979/753

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics