Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie das "Lernen können” im Alter ausgeschaltet wird

18.05.2010
Göttinger Neurowissenschaftler beschreiben erstmals, dass ein verändertes Zusammenspiel von Umwelt und Genom zum Verlust von Lernvermögen im Alter führt. Sie klären den Mechanismus auf und zeigen mögliche neue Wege zur Behandlung von Altersdemenz. Veröffentlicht in SCIENCE.

Geistig fit im hohen Alter, das ist ein besonderes Geschenk des Lebens. Altkanzler Helmut Schmidt (91) und Altpräsident Richard von Weizsäcker (90) sind Beispiele dafür, dass "geistige Fitness" bis ins hohe Alter möglich ist. Die meisten Menschen müssen sich mit zunehmendem Alter eher mit den Einschränkungen ihres Lernvermögens arrangieren.

Alter ist auch der wichtigste Risikofaktor für Alzheimer. Dabei ist in den wenigsten Fällen eine vererbte Form von Alzheimer der Grund dafür, sondern die "erworbene" Variante. Eine ursächliche Behandlung gibt es für beide Formen bislang nicht. Göttinger Neurowissenschaftler vom European Neuroscience Institut (ENI-G) zeigen jetzt neue Wege für eine mögliche Behandlung auf.

In ihrer neuesten Studie beschreibt das Forscherteam unter der Leitung von Dr. André Fischer erstmals, dass eine veränderte Umwelt-Genom-Interaktion zum Verlust von Lernvermögen im Alter führt, und sie klären den Mechanismus auf. Gefunden haben die Forscher eine Art Schalter für das "Lernen können". Dieser ist schon zu Beginn der zweiten Lebenshälfte "dereguliert" und damit quasi auf "Aus" gestellt. Das Forscherteam ist davon überzeugt, damit einen Ansatzpunkt für eine in der Zukunft mögliche "Pille gegen Altersdemenz" gefunden zu haben. Die Forschungsergebnisse der ENI-G-Forscher wurden am 7. Mai 2010 in dem international renommierten Wissenschaftsmagazin SCIENCE veröffentlicht.

Erst ein moderner Forschungsansatz hat den Göttinger ENI-Forschern zu den jüngsten Erkenntnissen verholfen. Dieser berücksichtigt Erkenntnisse der so genannten "Epigenetik". Danach beeinflussen vor allem Faktoren der Umwelt, ob und welche Gene des verfügbaren Erbguts "reguliert", das heißt ein- oder aus-, runter- oder hochgeschaltet, werden. Die vermittelnden Schaltstellen für diese "Umwelt-Genom-Interaktion" liegen nicht in den Genen oder der Erbsubstanz selbst, sondern in der dreidimensionalen Verpackungsstruktur der Gene.

Vermittelt wird die molekulare Interaktion zwischen Umwelt und Genom (der Erbsubstanz) von "Histonen" oder "Histonproteinen". Impulse aus der Umwelt bewirken an diesen Proteinen je nach Impuls unterschiedliche molekulare Veränderungen, so genannte "Modifikationen". Ein solcher wichtiger epigenetischer Mechanismus ist die "Histonacetylierung", wobei Acetyl-gruppen an bestimmte Stellen der Histone, angehängt werden. Genau diese "Histonacetylierung" spielt in den aktuellen Forschungsergebnissen der Göttinger Neurowissenschaftler eine zentrale Rolle.

"Probanden" der Studie waren Mäuse im Alter von 3 und 16 Monaten. Die Mäuse beider Altersstufen absolvierten die selben Tests zur Untersuchung von Gedächtnis und Lernfähigkeiten. Das besondere Interesse der Forscher galt dabei den Test-Ergebnissen der 16 Monate alten Mäusen. Sie sind das "Mausmodell" für den alternden Menschen im Alter um die 55 Jahre. Insgesamt zeigten die Tests: Alternde Mäuse zeigen in Gedächtnistests erste Anzeichen für einen Verlust von Lernfähigkeit.

In weiteren Untersuchungen konnten die Forscher zeigen, dass der Verlust von Lernfähigkeit bei alternden Mäusen gekoppelt ist mit einem nahezu kompletten Ausfall aller Gene, die beim Prozess "Lernen" eine Rolle spielen. Untersucht wurde hierbei eine bestimmte Hirnregion, der Hippokampus. Dieser ist bei Nagern wie beim Mensch wesentlich für das Lernvermögen. Zudem ist der Hippokampus die Hirnregion, die bei der Alzheimerdemenz als erste geschädigt wird. Während junge Mäuse während des Lernens über 1.500 hippokampale Gene angeschaltet hatten, lag die Zahl bei den alternden Mäusen von 16 Monaten bei nahezu "Null".

Was schaltet die Gene für "Lernen-können" im Alter komplett ab? "Solexa", ein neues Verfahren zur schnellen Sequenzierung ganzer Genome lieferte die Antwort. "Erstmals haben wir bewährte verhaltensbiologische Untersuchungstestverfahren zum Lernen mit modernen Verfahren der Genom-Sequenzierung kombiniert", sagt Dr. André Fischer. Mit Hilfe dieses Verfahrens gelang den Forschern nun der Blick auf Veränderungen an den Histonen und mögliche Unterschiede bei jungen und alternden Mäusen. Hier fanden sie den "Schalter", der die Lern-Gene in der alternden Maus abschaltet: "H4K12", das Histon 4, das normalerweise über eine Acetylierung an Position 12 verfügt, ist dereguliert. "Diese eine Veränderung hat bewirkt, dass keine Lern-Gene mehr aktiviert werden können. Unsere Forschungsergebnisse zeigen erstmals, dass es einen kausalen Zusammenhang zwischen epigenetischen Mechanismen und dem Verlust an Lernfähigkeit im Alter gibt", sagt Dr. André Fischer.

Die neuen Erkenntnisse eröffnen einen Weg für Behandlungsmöglichkeiten: "Wenn wir einen solchen Schalter wie H4K12 kennen, können wir uns gezielt auf die Suche nach Substanzen machen, um ihn wieder anzuschalten”, sagt Dr. Fischer. In früheren Studien haben die ENI-Forscher dafür bereits Erkenntnisse gewonnen. Danach lässt sich die Histonacytelierung auf künstliche Weise durch die Gabe von so genannten HDAC-Inhibitoren erreichen. Ein solche Substanz, die Suberolylanilid Hydroxamid Säure (SAHA), wird bereits in ähnlicher Funktion zur Behandlung bestimmter Krebsformen an Menschen eingesetzt.

Die neuen Erkenntnisse der Göttinger Neurowissenschaftler könnten vor allem bedeutsam werden für die Entwicklung von medikamentösen Behandlungsmöglichkeiten, die auf die molekularen Ursachen von neuronalen und neurodegenerativen Erkrankungen des Alters zielen. Viele Arbeiten weltweit haben bestätigt, dass die Modifizierung von Histonacetylierung, z.B. durch HDAC Inhibitoren, eine gute Strategie zur Behandlung von Altersdemenz oder Alzheimer darstellt. "Um den Schritt in die Klinik zu tun und Menschen zu behandeln, fehlen uns noch spezifische, sehr gezielt einsetzbare Wirkstoffe. Die derzeitigen HDAC-Inhibitoren sind unspezifisch und wirken nur grob in die richtige Richtung. Sie sind aber nicht geeignet, um die Acetylierung an nur einer bestimmten Position zu erreichen", sagt Dr. Fischer.

"Krankheiten wie Alzheimer sind in der Regel multifaktoriell. Das heißt: in der Regel tragen eine ganze Reihe von genetischen und umweltbedingten Risikofaktoren, wie z.B. das Alter, zur Krankheit bei. Alle Risikofaktoren auszuschalten ist schwierig", sagt Dr. André Fischer: "Wir gehen davon aus, dass verschiedenste Risikofaktoren zur ähnlichen Veränderungen der Histoneacetylierung führen. Wir nennen das eine "epigenetische Signatur". Diese kann als so etwas wie das Nadelöhr von dementiellen Erkrankungen angesehen werden. Eine solche epigenetische Signatur stellt demnach ein sehr gutes Ziel für eine Behandlung dar. Unsere neuesten Forschungsergebnisse zeigen, dass eine veränderte H4K12-acetylierung die epigenetische Signatur des alternden Hippokampus ist."

ORIGINALVERÖFFENTLICHUNG:
ALTERED HISTONE ACETYLATION IS ASSOCIATED WITH AGE-DEPENDENT MEMORY IMPAIRMENT IN MICE, Peleg, Sananbenesi, Zovoilis et al., SCIENCE, May 7th, 2010

http://www.sciencemag.org/cgi/content/abstract/328/5979/753

WEITERE INFORMATIONEN
European Neuroscience Institute Göttingen (ENI-G)
Nachwuchsgruppe Experimentelle Neuropathologie
Dr. André Fischer
Telefon +49 / 551 / 39-10378
afische2@gwdg.de
Grisebachstr. 5, D-37077 Göttingen

Stefan Weller | idw
Weitere Informationen:
http://www.gwdg.de
http://www.sciencemag.org/cgi/content/abstract/328/5979/753

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit