Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Grüne" Energie aus Algen

10.07.2009
Angesichts der Verknappung petrochemischer Rohstoffe und des Klimawandels ist die Entwicklung CO2-neutraler nachhaltiger Brennstoffe eine der drängendsten Herausforderungen unserer Zeit.

Energiepflanzen wie Raps oder Ölpalme sind wegen der Konkurrenz zur Nahrungsmittelproduktion in die Diskussion geraten. Einen wichtigen Beitrag für die Energieversorgung von morgen könnte daher die Kultivierung von Mikroalgen bieten. Um diese energetisch nutzen zu können, entwickeln Wissenschaftler am KIT geschlossene Photoreaktoren und neue Verfahren für den Zellaufschluss.

Mikroalgen sind einzellige, pflanzenartige Organismen, die Photosynthese betreiben und Kohlendioxid (CO2) in Biomasse umwandeln. Aus dieser Biomasse lassen sich sowohl Wert- und Wirkstoffe, als auch Energieträger wie Biodiesel gewinnen. Da Algen bei ihrem Wachstum zuerst die Menge an CO2 aufnehmen, die sie später bei der energetischen Nutzung wieder freisetzen, lässt sich Energie aus Algen im Gegensatz zu konventionellen Energieträgern CO2-neutral gewinnen.

Neben der Chance der CO2-neutralen Kreislaufwirtschaft, haben die Algen noch einen weiteren Vorteil: Industrielle CO2-Emissionen lassen sich als "Rohstoff" nutzen, da Algen bei hohen Kohlendioxid-Konzentrationen schneller wachsen und damit mehr energetisch nutzbare Biomasse produzieren.

Dies ist jedoch nicht ihr einziger Pluspunkt: "Verglichen mit Landpflanzen produzieren Algen bis zu fünfmal so viel Biomasse pro Hektar und enthalten 30 bis 40 Prozent energetisch nutzbare Öle", so Professor Clemens Posten, der diese Forschung am Institut für Bio- und Lebensmitteltechnik am KIT leitet. Da sich Algen auch in ariden, also trockenen Gegenden kultivieren lassen, die sich für den Landbau nicht eignen, bestehe kaum Konkurrenz zu den Agrarflächen. Dazu sind dort jedoch geschlossene Systeme notwendig.

Gegenwärtig werden Algen in offenen Becken in südlichen Ländern mit relativ geringer Produktivität produziert. Genau hier setzt Postens neue Technologie an. "Wir gehen verfahrenstechnisch ganz anders heran und arbeiten mit geschlossenen Photo-Bioreaktoren", so der Wissenschaftler. "Unsere Anlagen wandeln Sonnenenergie mit fünffach höherem Wirkungsgrad in Biomasse um als offene Becken." Die Plattenreaktoren stehen dabei senkrecht, ähnlich wie Photovoltaikzellen. "So sieht jede Alge ein bisschen weniger Licht, die Anlage arbeitet dafür aber mit höherem Wirkunggsgrad", betont der Biologe und Elektrotechniker.

Die Algenproduktion funktioniert daher nicht nur in Ländern mit extrem hoher Sonneneinstrahlung. Die meisten Algen benötigen maximal zehn Prozent des ankommenden Sonnenlichts. Der Rest werde einfach verschwendet, falls man nicht ein optimales Lichtmanagement im Photo-Bioreaktor habe, so der Wissenschaftler Posten. Denn in der Sahara gebe es gerade mal doppelt so viel Sonne wie bei uns, dafür müsse man dort aber den Reaktorinhalt kühlen. Weitere Vorteile des geschlossenen Systems sind drastische Ersparnisse an Wasser und Düngemitteln. Dabei ist auch eine Doppelnutzung zur Produktion von Lebensmitteln oder Feinchemikalien aus den Algen und der anschließenden energetischen Verwertung der Restbiomasse denkbar.

An Postens Institut ist eine der beiden Arbeitsgruppen des KIT angesiedelt, die intensiv auf dem Gebiet der Algen-Biotechnologie forschen. "Bei der Entwicklung von Photo-Bioreaktoren gehören wir mittlerweile zu den drei Standorten weltweit, in denen man in der Verfahrenstechnik, und nicht nur in der Biologie, deutlich vorankommt", so Posten.

Wo sein Forschungsgebiet am Campus Süd des KIT aufhört, setzt die Abteilung Hochleistungsimpulstechnik am Institut für Hochleistungsimpuls- und Mikrowellentechnik am KIT-Campus Nord an. Hier geht es darum, mittels Elektroimpulsbehandlung der Algenbiomasse die wertvollen Inhaltsstoffe zu entlocken. Bisher hat Dr. Georg Müller, der die Abteilung leitet, zusammen mit Partnern aus Forschung und Industrie den Aufschluss von Pflanzenzellen wie Oliven, Weintrauben, Äpfeln, Zuckerrüben und terrestrischen Energiepflanzen erforscht und teilweise großtechnisch umgesetzt. "Unser Ziel ist es, neue wirtschaftliche und nachhaltige Extraktionsverfahren zu entwickeln, um möglichst viel energetisch nutzbare Zellinhalte aus den Algen zu erhalten", so Müller. "Bei unserem Verfahren werden Pflanzenzellen für sehr kurze Zeit einem hohen elektrischen Feld ausgesetzt. Dies führt zur Perforierung der Zellmembran und Freisetzung von Inhaltsstoffen".

Die Kooperation der beiden Arbeitsgruppen soll nun das vorhandene Know-how bündeln und nutzt dazu eine Anschubfinanzierung des KIT-Zentrums Energie. Geplant ist der Aufbau einer KIT-"Algenplattform" für die energetische Nutzung von Mikroalgen. Mittelfristig sollen hierfür auf dem Campus Nord des KIT Pilot- und Demonstrationsanlagen entstehen unter Nutzung der räumlichen und infrastrukturellen Vorteile. "Damit knüpfen wir einen wichtigen Knoten in der momentan rapide ablaufenden Vernetzung in der Algenbiotechnologie", so Posten. Um die Energiegewinnung aus Algen wirtschaftlich zu machen, wird es darum gehen, die Investitions- und Betriebskosten für Photo-Bioreaktoren gering zu halten und gleichzeitig hocheffiziente Verfahren zur Ernte und für den Aufschluss der Algen zu entwickeln.

Um den Kreislauf zur vollständigen energetischen Nutzung der Algenbiomasse zu schließen, gehen die KIT-Forscher noch einen Schritt weiter. Die nach der Extraktion verbleibende Biomasse (60-70 Prozent) soll durch das am Campus Nord entwickelte Verfahren der hydrothermalen Vergasung in weitere Energieträger wie Wasserstoff oder Methan umgewandelt werden.

In der Energieforschung ist das Karlsruher Institut für Technologie (KIT) eine der europaweit führenden Einrichtungen: Das KIT-Zentrum Energie vereint grundlegende und angewandte Forschung zu allen relevanten Energieformen für Industrie, Haushalt, Dienstleistungen und Mobilität. In die ganzheitliche Betrachtung des Energiekreislaufs sind Umwandlungsprozesse und Energieeffizienz mit einbezogen. Das KIT-Zentrum Energie verbindet exzellente technik- und naturwissenschaftliche Kompetenzen mit wirtschafts-, geistes- und sozialwissenschaftlichem sowie rechtswissenschaftlichem Fachwissen. Die Arbeit des KIT-Zentrums Energie gliedert sich in sieben Topics: Energieumwandlung, erneuerbare Energien, Energiespeicherung und Energieverteilung, effiziente Energienutzung, Fusionstechnologie, Kernenergie und Sicherheit sowie Energiesystemanalyse.

Im Karlsruher Institut für Technologie schließen sich das Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft und die Universität Karlsruhe zusammen. Damit entsteht eine Einrichtung international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften. Im KIT arbeiten insgesamt 8000 Beschäftigte mit einem jährlichen Budget von 700 Millionen Euro. Das KIT baut auf das Wissensdreieck For-schung - Lehre - Innovation. Es setzt neue Maßstäbe in der Nachwuchsförderung und zieht Spitzenwissenschaftler aus aller Welt an. Für die Wirtschaft fungiert das KIT als wichtiger Innovationspartner.

Dr. Elisabeth Zuber-Knost | idw
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften