Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit "gewöhnlichen" Fluoreszenzfarbstoffen lebende Zellverbünde nanoskopisch untersuchen

07.07.2009
Heidelberger Wissenschaftler realisiert Lokalisationsmikroskopie mit grün leuchtendem Protein

Ein hochleistungsfähiges Instrument zur Erforschung zellulärer Vorgänge haben Wissenschaftler der Universität Heidelberg entwickelt: Ihr weltweit schnellstes Nanolichtmikroskop zur 3D-Zellanalyse nutzt dabei ein neues Verfahren der Lokalisationsmikroskopie, die Spectral Precision Distance Microscopy (SPDM):

Damit können mehrere lebende Zellen gleichzeitig mit ge­wöhnlichen, in den Labors sehr gut etablierten Fluoreszenzfarbstoffen wie dem Green Fluorescent Protein (GFP) im molekularen Detail untersucht werden. "Bis­her war die lichtoptische Nanoskopie nur mit speziellen schaltbaren Leuchtmolekülen unter hohem Aufwand möglich", betont Prof. Dr. Dr. Christoph Cremer vom Kirchhoff-Institut für Physik.

In der hochauflösenden Nanolichtmikroskopie kommt fluoreszierenden Farbstoffen eine zentrale Rolle zu. Um in der "Dämmerung" der Zelle einzelne benachbarte Moleküle zu lokalisieren und getrennt sichtbar zu machen, müssen sie mit einem zeitlich veränderbaren Lichtsignal versehen werden. Dies geschieht bislang durch die Zugabe von speziell hergestellten Fluoreszenzmolekülen, die durch Licht in geeigneter Weise an- und abgeschaltet werden. Wie aktuelle Forschungen von Prof. Cremer gezeigt haben, kann dieses Schalten unter bestimmten photophysikalischen Bedingungen auch für viele ganz "gewöhnliche" Farbstoffe realisiert werden.

Möglich wird dies durch sogenanntes reversibles Bleichen der Fluoreszenzfarbstoffe. Nach Angaben des Wissenschaftlers sind in den biomedizinischen Labors weltweit bereits Millionen von Genkonstrukten mit Farbstoffen aus der GFP-Gruppe vorhanden und wären für diese Lokalisationsmikroskopie unmittelbar einsetzbar.

Der Heidelberger Forscher und sein Team erweitern mit ihrer Lokalisationsmikroskopie SPDM die Möglichkeiten des von ihnen entwickelten Nanoskops Vertico SMI, das einen extremen Weitfeldblick mit einer außerordentlichen Nanometergenauigkeit verbindet: Damit lassen sich nicht nur große Zellareale, sondern auch Zellverbünde unter Verwendung sichtbaren Laserlichts zweidimensional mit einer Auflösung von bis hinunter zu zehn Nanometer untersuchen. Eine hohe Aufnahmegeschwindigkeit ermöglicht erstmals Nanoaufnahmen ganzer - auch lebender - Zellen in 3D mit einer Auflösung von bis zu 40 Nanometer in Echtzeit.

Eine hohe Dichte an sichtbaren Molekülen ist von Bedeutung, um zum Beispiel Molekülansammlungen als Orte verstärkter Aktivität zu erkennen. Mit dem von Prof. Cremer entwickelten Nanoskopieverfahren können in einem großen Gesichtsfeld mehrere Millionen Einzelmoleküle eines bestimmten Typs lokalisiert und innerhalb von 30 Sekunden mit bis zu 2.000 Einzelbildern - ausreichend für eine Gesamtaufnahme - erfasst werden. Die hohe Aufnahmegeschwindigkeit erlaubt es, extrem nah zusammenliegende Moleküle an Nanostrukturen sogar in lebenden Zellen zu beobachten. Mit der Erweiterung der SPDM zur Mehrfarben-Co-Lokalisationsmikroskopie lassen sich zwei verschiedene Protein-Typen mit gängigen Fluoreszenzmolekülen beispielsweise aus der GFP-Gruppe markieren und durch unterschiedliche Licht-Wellenlängen aufspüren. Dadurch können, so Prof. Cremer, genauere Informatio­nen über mögliche Interaktionen von einzelnen, lokalisierten Proteinmolekülen in Nanostrukturen gewonnen werden als mit dem üblicherweise eingesetzten Untersuchungsverfahren des Fluorescence Resonance Energy Transfer (FRET).

Anwendungsgebiete für Nanoskop und Lokalisationsmikroskopie liegen in der pharmazeutischen, zellbiolo­gischen, medizinischen und biophysikalischen Forschung - überall dort, wo Molekulare Bildgebung ("Molecular Imaging") auf der zellulären Ebene angestrebt wird. Derzeit werden sie in Kooperationsprojekten in den Bereichen Pharmakologie, Kardiologie und der Stammzellforschung eingesetzt. Weitere Einsatzmöglichkeiten sind Untersuchungen zur Interaktion von Viren und Zellen, die aufgrund ihrer geringen Größe nicht mit herkömmlichen Lichtmikroskopen zu erfassen sind, sowie die Erforschung altersbedingter neurologischer Degenerationserscheinungen und die Krebsforschung. Durch die Positionsbestimmung einzelner Moleküle lassen sich zum Beispiel neue Erkenntnisse über die Regulation und die Aktivitäten von Genen und Proteinen oder zu Veränderungen zellulärer Nanostrukturen gewinnen. Weitere Einsatzbereiche sind unter anderem die Materialforschung, die Qualitätskontrolle von Nanobeschichtungen, die Schadensanalyse von Bruchstellen oder die Detektion kleinster Stoffmengen in der Umweltforschung.

Das Patentportfolio für die Nanoskopie-Technologie samt Anwendungen wird vom Technologie-Lizenz-Büro in Karlsruhe verwertet.

Informationen im Internet sind unter http://www.kip.uni-heidelberg.de/AG_Cremer abrufbar.

Kontakt:
Prof. Dr. Dr. Christoph Cremer
Kirchhoff-Institut für Physik
Telefon 06221 54-9252
http://www.kip.uni-heidelberg.de/AG_Cremer
Allgemeine Rückfragen von Journalisten bitte an:
Universität Heidelberg
Kommunikation und Marketing
Dr. Michael Schwarz, Pressesprecher
michael.schwarz@rektorat.uni-heidelberg.de
Irene Thewalt
Tel. 06221 54-2311
presse@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.kip.uni-heidelberg.de/AG_Cremer
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie