Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der "geheime" Zwei-Stufen-Plan zur Zellverteidigung

16.07.2010
Wenn Zellen von Bakterien angegriffen werden, stehen ihnen molekularer "Waffen" zur Verfügung. Diese haben häufig schädliche Nebenwirkungen und werden daher über ausgefeilte Mechanismen kontrolliert.

Matthias Farlik und Thomas Decker vom Zentrum für Molekulare Biologie der Universität Wien (Max F. Perutz Laboratories) konnten gemeinsam mit Mathias Müller von der Veterinärmedizinischen Universität Wien die zellulären Abwehrstrategien enthüllen und damit Hinweise für die Bekämpfung von Krankheiten liefern. Ihre Ergebnisse erscheinen nun im Journal "Immunity". Die Publikation entstand im Rahmen des FWF-Spezialforschungsbereiches (SFB) "Jak-Stat-Signalling".

Zellen können auf vielfältige Weise auf ihre Umgebung reagieren, um sich gegen Angriffe von Erregern zu verteidigen. In der Regel modifizieren sie vorhandene Proteine oder stellen neue her, die dann wiederum Abwehrstoffe produzieren. Ein klassisches Beispiel für eine solche Verteidigungsreaktion ist die Produktion von Stickstoffmonoxid (NO), das eine stark antibakterielle Wirkung aufweist. Dieser "zelluläre Giftgasangriff" ist aber nicht ganz ungefährlich: NO ist ein aggressives freies Radikal, das mit der Entstehung von Krebs und entzündlichen Prozessen im Körper in Zusammenhang steht. Um also nicht mit Kanonen auf die sprichwörtlichen Spatzen zu schießen, "informiert" sich die Zelle umfassend, bevor sie ihre NO-Produktion hochfährt.

Wie die Zelle das bewerkstelligt, haben Matthias Farlik unter der Leitung von Thomas Decker vom Zentrum für Molekulare Biologie der Universität Wien (Max F. Perutz Laboratories) und Mathias Müller von der Veterinärmedizinischen Universität Wien untersucht. Sie konnten nicht nur die Geheimnisse der NO-Produktion lüften, sondern entdeckten auch einen neuen Regulationsmechanismus für die Gen-Transkription. Damit liefert die Forschungsgruppe einen wichtigen Beitrag zum Verständnis des molekularen Kontrollmechanismus der Gen-Transkription, also der Übersetzung des genetischen Codes zur Produktion von Proteinen. In weiterer Folge könnten die Erkenntnisse der Wissenschaftler neue Strategien bei der Bekämpfung von Infektionskrankheiten eröffnen.

Zelle überprüft zwei Signale, bevor sie ihren Angriff startet

Die Forscher untersuchten diese Prozesse am Bakterium "Listeria monocytogenes", einem der häufigsten und gefährlichsten Erreger von Lebensmittelinfektionen. Als Reaktion auf eine Infektion mit Listerien produzieren Zellen das Enzym iNOS – induzierbare NO-Synthase, das wiederum Stickstoffmonoxid herstellt. Um die Enzymproduktion zu regulieren, überprüft die Zelle den Status zweier unterschiedlicher Signalwege und kombiniert die Informationen daraus. Die Forscher konnten zeigen, dass jedes der beiden Signale nur einen Teil des Prozesses steuert. Erst wenn beide Signalwege aktiv sind, wird ein Proteinkomplex hergestellt, der das für die iNOS-Produktion verantwortliche Gen einschaltet.

"Die Zelle hat sozusagen einen zweistufigen Alarmplan", erklärt Thomas Decker, Leiter der Forschungsgruppe von Matthias Farlik am Zentrum für Molekulare Biologie der Universität Wien: "Es müssen also beide Signale vorhanden sein, damit die iNOS in Stellung gebracht werden und die NO-Produktion startet."

Was aber, wenn die Signale nicht zeitgleich eintreffen?

Ein Problem dabei ist, das diese Signale nicht immer zeitgleich eintreffen. Die Zellen lösen dieses Problem auf geradezu geniale Weise: Jeder der Signalwege führt unabhängig voneinander zur Produktion eines Bestandteiles des Proteinkomplexes. Dieser bleibt eine Weile bestehen und bildet somit eine Art molekulares Gedächtnis. Wird auch der zweite Signalweg rechtzeitig aktiviert, schaltet der vollständige Proteinkomplex das Gen für die iNOS-Produktion ein. Kommt das zweite Signal nicht, wird der Teilkomplex wieder abgebaut, das ursprüngliche Signal wird damit "vergessen" und das Gen kann erst wieder aktiviert werden, wenn neuerlich beide Signale eintreffen.

Publikation
Matthias Farlik, Benjamin Reutterer, Christian Schindler, Florian Greten, Claus Vogl, Mathias Müller und Thomas Decker: Nonconventional Initiation Complex Assembly by STAT and NF-kB Transcription Factors Regulates Nitric Oxide Synthase Expression. Immunity, Vol.32, issue 7, July 2010.

Die Publikation entstand im Rahmen des Spezialforschungsbereiches (SFB) "Jak-Stat-Signalling from Basics to Disease" unter Beteiligung der Veterinärmedizinischen Universität Wien, der Universität Wien und der Medizinischen Universität Wien und wurde vom FWF gefördert. SFB-Homepage: www.jak-stat.at

Max F. Perutz Laboratories
Die Max F. Perutz Laboratories (MFPL) sind ein 2005 gegründetes Joint-Venture der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL forschen über 60 Arbeitsgruppen im Bereich Molekularbiologie. Seit 2007 leitet der Biochemiker Graham Warren das Institut.
Wissenschaftlicher Kontakte
Univ.-Prof. Dr. Thomas Decker
Department für Mikrobiologie, Immunbiologie und Genetik
Universität Wien
T +43-1-4277-546 05
thomas.decker@univie.ac.at
O. Univ.-Prof. Dr. Mathias Müller
Veterinärmedizinische Universität Wien
T +43-1-250 77-5620
mathias.mueller@vetmeduni.ac.at
Rückfragehinweise
Gabriele Schaller
Communications
Max F. Perutz Laboratories
T +43-1-4277-240 14
M +43-664-602 77-240 14
gabriele.schaller@mfpl.ac.at
Beate Zöchmeister
Veterinärmedizinische Universität Wien
T +43-1-250 77-1151
beate.zoechmeister@vetmeduni.ac.at

Veronika Schallhart | idw
Weitere Informationen:
http://www.cell.com/immunity/home

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht UVB-Strahlung beeinflusst Verhalten von Stichlingen
13.12.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Mikroorganismen auf zwei Kontinenten studieren
13.12.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften