Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmechanik trifft auf Biologie

12.12.2016

VolkswagenStiftung fördert Tübinger Projekt: „A Quantum Beat for Life” untersucht, ob lebende Organismen quantenmechanische Effekte zur Photosynthese nutzen

Pflanzen und viele Bakterien wandeln bei der Photosynthese Licht in chemische Energie um. Der Wirkungsgrad der ersten Schritte der Energiewandlung kann dabei mehr als 99 Prozent erreichen und ist selbst leistungsstärksten Solarzellen weit überlegen.


Cyanobakterium im Fabry-Pérot Mikroresonator

Weißlicht (oben, bestehend aus vielen Wellenlängen) trifft auf einen „Mikroresonator“ aus zwei Silberspiegeln mit wenigen Mikrometern Abstand, die ein starkes optisches Feld aufbauen. Wird ein Cyanobakterium (Mitte) diesem ausgesetzt, könnten die lichtsammelnden Photosynthese-Komplexe des Bakteriums (Vergrößerung, links) "gleichgeschaltet" bzw. „verschränkt“ werden. Eventuelle Änderungen in der photosynthetischen Effizienz, werden über ein Mikroskopobjektiv (unten, nicht maßstabsgetreu) erfasst und untersucht.

Meixner / Universität Tübingen

Wissenschaftlerinnen und Wissenschaftler der Universität Tübingen wollen mit einem neuartigen Ansatz klären, ob derartige Bakterien und damit auch Blätter quantenmechanische Effekte nutzen, um derart effizient arbeiten zu können. Die VolkswagenStiftung fördert das interdisziplinäre Projekt „A Quantum Beat for Life“ mit 100.000 Euro.

Professor Alfred Meixner vom Institut für Physikalische und Theoretische Chemie und Professor Klaus Harter vom Zentrum für Molekularbiologie der Pflanzen werden eine quantenoptische Technik einsetzen, um erstmals in einem lebenden Cyanobakterium (Blaualgen) quantenmechanische Effekte in der Photosynthese zu beobachten oder auszulösen. Cyanobakterien und Pflanzen arbeiten bei der Photosynthese mit sogenannten Lichtsammelkomplexen, einer Ansammlung von Proteinstrukturen mit hochstrukturiert angeordneten Farbpigmenten.

Schon länger vermuten Wissenschaftler, dass die enorme Energieeffizienz von Bakterien und Blättern darauf beruht, dass sich die rund 10.000 Farbpigmente der Lichtsammelkomplexe nach quantenmechanischen Prinzipien „verschränken“ und zusammenarbeiten, ähnlich wie die Musiker in einem Orchester.

Bisher wurden Quantenphänomene nur in isolierten Photosynthesekomplexen und bei extrem tiefen Temperaturen beobachtet. „Ob derartige Quantenphänomene auch in lebenden Zellen unter üblichen Umweltbedingungen auftreten und dies dem Organismus Vorteile bringt, ist nicht geklärt“, sagt Klaus Harter. Alfred Meixner erklärt den physikalischen Ansatz:

„Wir untersuchen einzelne Cyanobakterien in einem so genannten optischen Fabry-Pérot Mikroresonator.“ Der Fabry-Pérot Mikroresonator besteht aus zwei parallelen Silberspiegeln im Abstand von nur wenigen Mikrometern.

Diese sollen nun in den Cyanobakterien einen quantenmechanischen Effekt erzeugen: Indem sie das von den einzelnen Farbpigmenten ausgesendete Licht wieder in das Bakterium zurückwerfen, entsteht eine Rückkopplung, was dazu führen könnte, dass die Pigmente nicht mehr unabhängig sondern gemeinsam agieren. Ein ähnliches Prinzip wird bereits heute bei Lasern eingesetzt: durch Rückkopplung werden einzelne Moleküle dazu gezwungen, ihre Anregungsenergie im Takt einer Lichtwelle auszusenden und diese so zu verstärken.

„Bei den winzigen Dimensionen unseres Resonators wird die Rückkopplung sehr effizient, so dass dafür sehr wenige, vielleicht schon einzelne Photonen ausreichen“, erklärt Meixner. „Auf diese Weise wollen wir versuchen, die Anregungszustände der Pigmente im Cyanobakterium zu manipulieren, ihr Zusammenwirken herbeizuführen und aufrechtzuerhalten.“

Gelänge dies, wäre es das erste Mal, dass ein sogenanntes „ausgedehntes Quantenverhalten“ ‒ nicht nur einzelne Moleküle, sondern eine große Anzahl verschränkt sich quantenmechanisch ‒ in einem lebenden Organismus (in vivo) nachgewiesen werden konnte. Für die Biologie wäre dies von großer Bedeutung, wie Klaus Harter sagt. „Treten solche Effekte tatsächlich auf, sind sie für den Organismus jedoch nur dann von Vorteil, wenn damit die Leistungsfähigkeit seiner Photosynthese erhöht wird.

Eine gesteigerte Effizienz müsste sich anhand einer Erhöhung der photosynthetischen Produkte nachweisen lassen, die dem Cyanobakterium wiederum zu einem besseren Wachstum verhelfen. Gelingt dieser Nachweis, stehen wir vor einem wissenschaftlichen Durchbruch auf dem Gebiet der Quantenbiologie.“ Mit ihrer Förderinitiative „Experiment!“ unterstützt die Volkswagenstiftung innovative Forschungsideen, die unkonventionelle Hypothesen in den Blick nehmen oder neue Methoden und Technologien etablieren wollen.

Ein Erfolg würde Vermutungen unterstützen, dass möglicherweise weitere biologische Phänomene, darunter der Magnetsinn von Zugvögeln, der Geruchsinn von Tier und Mensch sowie manche enzymatische Prozesse, auf quantenmechanischen Prinzipien beruhen. Zudem hätte der Nachweis ausgedehnten Quantenverhaltens in einem lebenden Organismus weitreichende Konsequenzen für das Verständnis des Lebens an sich: Es würde bedeuten, dass die Grundlagen der Evolution nicht nur auf den Gesetzen der klassischen Mechanik und Thermodynamik beruhen, sondern auch tief in die Quantenphysik reichen.

Antje Karbe | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie