Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie die „Qualitätskontrolle“ bei der Montage eines Ribosoms funktioniert

19.11.2013
Heidelberger Wissenschaftler entschlüsseln die Rolle eines speziellen Proteins im Kontrollprozess

Ähnlich wie bei der Montage eines Fahrzeugs müssen sich die aus vielen Einzelteilen zusammengesetzten Ribosomen nach ihrem Zusammenbau einer „Qualitätskontrolle“ unterziehen. Erst dann können sie an ihren Bestimmungsort gebracht werden und dort ihre eigentliche Aufgabe – die Herstellung von Proteinen in der Zelle – übernehmen.


Qualitätskontrolle und Export des Ribosoms aus dem Zellkern in das Zytoplasma (schematische Darstellung)

Abbildung: Ed Hurt

Einen wichtigen Bestandteil dieses Kontrollprozesses hat jetzt ein Wissenschaftlerteam am Biochemie-Zentrum der Universität Heidelberg untersucht. Die Forscher um Prof. Dr. Ed Hurt konnten zeigen, dass ein spezielles Protein, das von der Hefe bis zum Menschen in allen Zellen vorkommt, wie ein molekularer Kontrollschalter funktioniert und so verhindert, dass unvollständige Ribosomen die „Montagehalle“ verlassen. Die Ergebnisse ihrer Untersuchungen wurden in der Fachzeitschrift „Nature“ veröffentlicht.

Ribosomen sind makromolekulare Komplexe, die aus einer Vielzahl von Bestandteilen bestehen. Dies sind Ribonukleinsäuren und ribosomale Proteine, die in einer speziellen dreidimensionalen Struktur arrangiert sind. Die korrekte Ribosomenherstellung ist von entscheidender Bedeutung für das Überleben aller Zellen. Ihr Zusammenbau ist ein nach strengen Regeln ablaufender Prozess, der der Montage eines Autos aus vielen Einzelteilen am Fließband ähnelt. Bevor das komplett montierte Fahrzeug die Montagehalle verlassen kann, wird seine volle Funktionstüchtigkeit geprüft, um dann an seinem Bestimmungsort zum Einsatz gebracht zu werden.

Wie diese „Qualitätskontrolle“ bei der Ribosomenherstellung abläuft, ist nach den Worten von Prof. Hurt bislang nur wenig erforscht. Die Heidelberger Wissenschaftler haben jetzt die Funktion eines Proteins aus der Familie der energie-verbrauchenden GTPasen in diesem Kontrollprozess entschlüsselt.

Nur Ribosomen, die korrekt zusammengebaut wurden, gelangen von ihrer „Montagehalle“ im Zellkern in das Zytoplasma, wo sie ihre eigentliche Aufgabe, die Synthese von Proteinen, erledigen. Der Export ins Zytoplasma ist abhängig davon, dass eine bestimmte Kontrollschranke überwunden wird. Dabei kommt der Exportfaktor Nmd3 zum Einsatz, der an das neu entstehende Ribosom bindet. Dazu muss das Signal gegeben werden, dass der Zusammenbau des Ribosoms richtig und vollständig erfolgt ist. Bis dahin aber bleibt der Ort, der für die Bindung des Exportvermittlers Nmd3 vorgesehen ist, durch eine Art „Kontrolleur“ besetzt.

Wie das Heidelberger Forscherteam zeigen konnte, übernimmt diese Funktion ein Mitglied aus der Proteinfamilie der GTPasen, das den Namen Nug2 trägt. Erst wenn ein spezielles Enzym in Aktion tritt, um das Ribosom am Ende der „Montage“ auf den Export in das Zytoplasma vorzubereiten und dabei die von der GTPase gespeicherte Energie verbraucht, verlässt der Kontrolleur Nug2 seinen Platz und macht den Weg frei für die Bindung des Exportfaktors Nmd3. Auf diese Weise wird der Export unvollständig zusammengebauter Ribosomen verhindert.

Nachdem das Team um Prof. Hurt entschlüsseln konnte, welche Rolle der Kontrolleur Nug2 bei der Ribosomenherstellung übernimmt, erhoffen sich die Forscher nun weitere Erkenntnisse über die Funktion verwandter Proteine. Diese sogenannten Nukleostemine sind bei höheren Eukaryoten einschließlich des Menschen zu finden. Dabei wollen die Heidelberger Wissenschaftler die molekularen Mechanismen entschlüsseln, mit denen verschiedene Enzyme aus der Nukleostemin-Familie die beiden grundlegenden zellulären Prozesse der Bildung von Ribosomen und der Vermehrung von Zellen verbinden. Kooperationspartner der aktuellen Forschungsarbeiten waren Wissenschaftler der University of Edinburgh (Großbritannien).

Informationen im Internet:
Forschergruppe Prof. Dr. Ed Hurt: http://www.uni-heidelberg.de/zentral/bzh/hurt
Biochemie-Zentrum der Universität Heidelberg: http://www.bzh.uni-heidelberg.de
Originalpublikation:
Y. Matsuo, S. Granneman, M. Thoms, R.-G. Manikas, D. Tollervey and E. Hurt: Coupled GTPase and remodeling ATPase activities form a checkpoint for ribosome export, Nature (17 November 2013), doi: 10.1038/nature12731
Kontakt:
Prof. Dr. Ed Hurt
Biochemie-Zentrum der Universität Heidelberg
Telefon (06221) 54-4173
ed.hurt@bzh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.bzh.uni-heidelberg.de
http://www.uni-heidelberg.de

Weitere Berichte zu: Biochemie-Zentrum GTPase GTPasen Protein Ribosom Zytoplasma emotionale Bindung enzyme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics