Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Qualitätskontrolle auf dem Weg zur Proteinherstellung

30.01.2015

Neue Forschungsarbeiten zeigen, wie fehlerhafte Moleküle sich selbst abbauen

Proteine, die Bausteine des Lebens, sind komplexe Moleküle. Ausgangspunkt ihrer Entstehung in der Zelle ist die DNA. Diese enthält alle genetischen Informationen eines Organismus und somit auch die ‚Baupläne‘ für verschiedenste lebenswichtige Proteine.


Das Enzym, das die Nukleotid-Dreierkette (CCA) an die Transfer-RNAs (tRNAs) anheftet, ist ein Protein, das wie ein Schaubstock wirkt: Es umklammert die jeweilige tRNA, wenn es ein solches CCA-Etikett darauf befestigt (1). Funktionstüchtige tRNA hat eine stabile Struktur und fällt anschlie-ßend sofort vom Enzym ab (2a). Fehlerhafte tRNA ist hingegen instabil und kann sich nicht vom Enzym befreien (2b). Es erhält deshalb ein zweites CCA-Etikett (3b). Erst danach befreit es sich vom Enzym (4b), es ist nun als fehlerhaft gekennzeichnet und wird abgebaut.

Bild: Dr. Claus D. Kuhn; mit Autorangabe zur Veröffentlichung frei.

Der Weg vom ‚Bauplan‘ bis zum fertigen Protein ist aber ein mehrstufiger und daher fehleranfälliger Prozess. Eine Forschungsgruppe am Cold Spring Harbor Laboratory (CSHL) in New York ist jetzt einem Mechanismus auf die Spur gekommen, der wesentlich zur Qualitätskontrolle auf dem Weg zur Proteinherstellung beiträgt.

In der Online-Ausgabe der renommierten Zeitschrift „Cell“ werden die neuen Forschungsergebnisse vorgestellt. Erstautor der Studie ist Dr. Claus D. Kuhn, der seit kurzem ein Labor am Forschungszentrum für Bio-Makromoleküle (BIOmac) der Universität Bayreuth leitet.

Ein Protein, dessen ‚Bauplan‘ in der DNA verankert ist, besteht aus zahlreichen kleineren Bausteinen. Damit es dem Bauplan entsprechend hergestellt werden kann, müssen diese Bausteine – es handelt sich um Aminosäuren – zunächst einmal bereitgestellt werden. Diese Aufgabe übernehmen spezielle Trägermoleküle, die Transfer-RNAs (kurz: tRNAs).

Sie werden mit unterschiedlichen Bausteinen beladen, die dann ihrerseits in der richtigen Reihenfolge zum fertigen Protein zusammengesetzt werden. Damit eine Transfer-RNA mit einem solchen Baustein beladen werden kann, muss sie zuvor mit einer Nukleotid-Dreierkette ausgestattet werden.

Diese Kette wird aufgrund ihrer Struktur „CCA“ genannt. Sie wirkt wie ein Etikett, das die jeweilige Transfer-RNA als funktionstüchtiges Trägermolekül kennzeichnet. Ein spezielles Enzym übernimmt die Aufgabe, ein solches CCA-Etikett an die Transfer-RNA anzuhängen.

Aber was geschieht, wenn eine Transfer-RNA defekt ist und nicht als Trägermolekül infrage kommt? In diesem Fall, so haben die Wissenschaftler herausgefunden, wird es doppelt mit dem CCA-Etikett ausgestattet. Die CCACCA-Struktur signalisiert der Zelle, dass es sich um ein fehlerhaftes Molekül handelt, das bei der Herstellung von Proteinen nicht verwendet werden darf. Infolgedessen wird die Transfer-RNA sehr rasch in der Zelle abgebaut, so dass die potenzielle Fehlerquelle beseitigt ist.

„Aufgrund dieser Erkenntnisse haben wir uns natürlich gefragt: Wie kann das Enzym, das die CCA-Etiketten an den Transfer-RNAs befestigt, zwischen fehlerfreien und defekten Trägermolekülen unterscheiden?“, berichtet Dr. Kuhn. „Die Antwort, die wir mithilfe der Röntgen-Kristallographie herausgefunden haben, hat uns überrascht: Das Enzym ist sozusagen einfältig und besitzt diese Fähigkeit überhaupt nicht. Es ist vielmehr die defekte Transfer-RNA, die aufgrund ihrer fehlerhaften Struktur selbst dafür sorgt, dass sie das CCA-Etikett in doppelter Ausführung erhält. Infolgedessen wird sie blitzschnell abgebaut, damit dem Prozess der Proteinherstellung keine fehlerhaften Transfer-RNAs zugeführt werden.“

Die Röntgenkristallographie macht es möglich, viele photographische Aufnahmen eines Moleküls in unterschiedlichen Stadien herzustellen. Auf diese Weise hat die Forschergruppe den Mechanismus aufklären können, der bewirkt, dass defekte Transfer-RNAs – und nur sie – als fehlerhaft markiert werden. Das Enzym umklammert jede einzelne Transfer-RNA wie ein Schraubstock und versetzt sie eine schraubenförmige Bewegung.

Währenddessen befestigt es die drei Bestandteile des CCA-Etiketts auf der Transfer-RNA. Anschließend versucht das Enzym, diesen Prozess zu wiederholen. Funktionstüchtige Transfer-RNAs können sich diesem Versuch entziehen, indem sie vom Enzym abfallen. Fehlerhafte Transfer-RNAs sind hingegen instabiler und flexibler. Sie können daher nicht verhindern, dass sie ein zweites CCA-Etikett erhalten.

„Diese Form der Qualitätskontrolle bei der Proteinherstellung war der Forschung bisher unbekannt. Wir haben hier erstmals einen Mechanismus entdeckt, mit dem Trägermoleküle sich selbst kontrollieren – und sich letztlich selbst abbauen, falls sie die Produktion fehlerfreier Proteine gefährden“, erläutert Dr. Claus D. Kuhn.

Nach seinem mehrjährigen Forschungsaufenthalt in New York wird er an der Universität Bayreuth diese grundlegenden Forschungsarbeiten zur Wechselwirkung zwischen RNA und Proteinen vertiefen. Das Elitenetzwerk Bayern fördert dafür ein am Forschungszentrum BIOmac eingerichtetes Labor, in dem vier hochqualifizierte Mitarbeiterinnen und Mitarbeiter kooperieren. „Die Infrastruktur für strukturbiologische Grundlagenforschung ist hier hervorragend, und ich freue mich schon auf die Zusammenarbeit mit den strukturbiologischen und biochemischen Arbeitsgruppen in Bayreuth auf diesem spannenden Forschungsgebiet“, so der Bayreuther Biochemiker.

Die Forschungsarbeiten am Cold Spring Harbor Laboratory (CSHL) in New York wurden von zahlreichen U.S.-amerikanischen Einrichtungen unterstützt: dem Howard Hughes Medical Institute, den US National Institutes of Health, dem Jane Coffin Childs Memorial Fund for Medical Research, dem Robertson Research Fund of Cold Spring Harbor Laboratory und nicht zuletzt dem Cold Spring Harbor Laboratory Women in Science Award.

Veröffentlichung:
Claus-D. Kuhn, Jeremy E. Wilusz, Yuxuan Zheng, Peter A. Beal, and Leemor Joshua-Tor,
On-Enzyme Refolding Permits Small RNA and tRNA Surveillance by the CCA-Adding Enzyme,
Cell (2015), DOI: 10.1016/j.cell.2015.01.005

Ansprechpartner:
Dr. Claus D. Kuhn
Elitenetzwerk Bayern
Forschungszentrum BIOmac
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (921) 55-4356
E-Mail: claus.kuhn@uni-bayreuth.de
URL: www.elitenetzwerk.bayern.de/kuhnlab

Christian Wißler | Universität Bayreuth

Weitere Berichte zu: Bauplan Cell Enzym Mechanismus Proteinherstellung Qualitätskontrolle RNA Transfer-RNA Zelle dna protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics