Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie der Qualitäts-Check in unseren Zellen funktioniert

08.07.2013
Ein zellulärer Kontrollmechanismus verhindert, dass fehlerhafte Proteine in unseren Zellen produziert werden. Berner Forschende haben nun wichtige Einblicke in diesen überlebenswichtigen Mechanismus erhalten, die zu neuen Therapieansätzen bei genetischen Krankheiten führen könnten.

Ein zellulärer Kontrollmechanismus verhindert, dass fehlerhafte Proteine in unseren Zellen produziert werden. Berner Forschende haben nun wichtige Einblicke in diesen überlebenswichtigen Mechanismus erhalten, die zu neuen Therapieansätzen bei genetischen Krankheiten führen könnten.

Ein Mensch besitzt Hunderttausende verschiedener Proteine, die ständig auf- und abgebaut werden. Wie in jeder Fabrik, in der Rohstoffe verarbeitet werden, gibt es in der Zelle verschiedene Kontrollmechanismen, welche die Qualität der Produkte – also der Proteine – prüfen. Ein solcher zellulärer Qualitäts-Check wird im Fachjargon «Nonsense-Mediated mRNA Decay» (NMD) genannt.

Ein Forscherteam um Oliver Mühlemann am Departement für Chemie und Biochemie der Universität Bern hat nun wichtige neue Einblicke in die molekulare Funktionsweise dieses Prozesses erhalten. Diese Erkenntnisse könnten womöglich dazu führen, neue Therapieansätze gegen genetische Krankheiten zu entwickeln. Die Forschungsresultate wurden gleich in zwei Artikeln der Fachzeitschrift «Nature Structural & Molecular Biology» veröffentlicht.

Kontrolle während der Protein-Produktion

Die Information zur Produktion aller Proteine einer Zelle sind in der Erbsubstanz, der DNA, gespeichert. Um ein Protein herzustellen, muss der entsprechende Bauplan, der auf einem bestimmten Abschnitt der DNA codiert ist, in sogenannte messengerRNA (mRNA) kopiert und dadurch vervielfältigt werden.

Die zellulären Proteinfabriken, die Ribosomen, lesen diese Informationsüberträger – die mRNAs – anhand des genetischen Codes ab und produzieren die entsprechenden Proteine. Regelmässig geschehen bei diesen komplexen biochemischen Vorgängen Fehler, wobei mRNAs mit defektem Protein-Bauplan entstehen.

Damit aufgrund dieser defekten Baupläne keine fehlerhaften Proteine produziert werden, entwickelten unsere Zellen im Laufe der Evolution den Qualitätskontrollmechanismus NMD, welcher defekte mRNAs erkennt und effizient abbaut. NMD sorgt unter anderem auch dafür, dass viele Mutationen in unseren Genen zu keinen Krankheitssymptomen führen – solange die zweite Kopie des betroffenen Gens noch intakt und somit ein korrekte Version des Bauplans vorhanden ist.

Damit die Qualitätskontrolle NMD ausgelöst wird, muss eine Vielzahl von Faktoren mit der fehlerhaften mRNA interagieren. Bis anhin war nicht bekannt, wann und wie dies geschieht. Biochemiker David Zünd, ein Doktorand im Team von Oliver Mühlemann, konnte in Zusammenarbeit mit Bioinformatikern vom Biozentrum Basel zeigen, welche Funktion ein für den Qualitäts-Check zentrales Protein einnimmt: Das Protein UPF1 (Up-Frameshift1) wird von allen mRNAs, unabhängig ob funktionsfähig oder beschädigt, beim NMD-Prozess rekrutiert.

Während UPF1 von den Proteinfabriken, den Ribosomen, bei funktionsfähigen mRNAs wieder entfernt wird, bleibt es an fehlerhaften mRNAs gebunden und rekrutiert zudem weitere Enzyme, die für den Abbau von falschen Bauplänen verantwortlich sind. «Das an die mRNA gebundene Protein UPF1 wirkt wie eine gespannte Falle, die bei Bedarf nur noch ausgelöst werden muss, um die

fehlerhafte mRNA abzubauen», sagt David Zünd.

Weiteres Rätsel gelöst

Die Molekularbiologin Simone Rufener, ebenfalls Doktorandin desselben Labors, konnte ein weiteres Rätsel im Zusammenhang mit NMD lösen. Frühere Ergebnisse von amerikanischen Forschern wiesen darauf hin, dass in mehrzelligen Organismen, im Gegensatz zu Einzellern, fehlerhafte mRNAs nur während einer kurzen Zeitspanne unmittelbar nach ihrer Produktion durch NMD erkannt und abgebaut werden können.

Dies hätte zur Folge, dass ältere fehlerhafte mRNA Moleküle, die bereits als Bauplan für die Protein-Massenproduktion dienen, immun gegen NMD wären. Somit würden von der Qualitätskontrolle übersehene fehlerhafte mRNAs zur Produktion grosser Mengen defekter Proteine führen – mit möglicherweise fatalen Folgen für den Organismus.

Die Doktorandin konnte aber nachweisen, dass die Qualitätskontrolle kontinuierlich stattfindet und NMD nebst den neu produzierten auch ältere fehlerhafte mRNAs erkennt, was die Effizienz der Qualitätskontrolle verbessert. «Diese Erkenntnis ist zudem ein Indiz dafür, dass der Grundmechanismus von NMD in einzelligen wie mehrzelligen Lebewesen konserviert ist und bereits früh in der Evolution entstand», sagt Simone Rufener.

Insgesamt helfen diese neuen Einblicke laut den Forschenden zu verstehen, wie unsere Zellen trotz fehlerhafter Genaktivität die Fehlerrate bei der Proteinproduktion verhältnismässig tief halten können. Im Erscheinungsbild verschiedener genetischer Krankheiten spielt NMD eine wichtige Rolle. Daher erhofft sich das Forscherteam, durch besseres Verständnis der molekularen Prozesse zur künftigen Therapie solcher Krankheiten beizutragen.

Quellenangaben:
Simone C Rufener & Oliver Mühlemann: eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol., 20:710-717 (doi:10.1038/nsmb.2576)

David Zünd, Andreas R Gruber, Mihaela Zavolan & Oliver Mühlemann: Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nat Struct Mol Biol., 7. Juli 2013, doi:10.1038/nsmb.2635

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie