Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Punktgenaue Diagnose erblicher Herzschwächen

07.04.2011
Heidelberger Wissenschaftler entwickeln Analyseverfahren zur schnellen und effizienten Suche nach Gendefekten

Leiden junge Menschen an einer Herzmuskelschwäche, sind häufig Fehler in der Erbinformation dafür verantwortlich. Doch die Suche danach war bisher aufwendig und teuer.

Wissenschaftler der Universitäts­klinik Heidelberg, des Deutschen Krebs­forschungs­zentrums sowie der Firma Febit Biomed GmbH haben nun ein Analyseverfahren entwickelt, das die Fahndung nach der krank­machenden Veränderung im Erbgut ver­einfacht: Erstmals können nun sämtliche bekannten genetischen Auslöser der Herz­schwäche gleichzeitig und kosteneffizient überprüft werden. Für Patienten und ihre Ange­hörigen bedeutet dies eine sicherere Diagnose und damit eine gezielte Beratung und Betreuung. Zudem kann das neue Verfahren in Zukunft mehr Betroffenen als bisher angeboten werden.

„Derzeit kennen wir rund 50 Gene, die - sofern defekt - solche Herzmuskelerkrankungen verursachen oder deren Verlauf ungünstig beeinflussen können“, erklärt Dr. Benjamin Meder, Arzt an der Medizinischen Universitätsklinik Heidelberg. Je nach Fehler im genetischen Bauplan sind bestimmte Abläufe im Herzmuskel gestört. Abhängig davon können spezielle Medikamente, eine intensivere Beobachtung bzw. die frühe Versorgung mit einem Schrittmacher angezeigt sein.

Rhythmus-Störungen und Herzversagen als mögliche Folgen

Rund 200.000 Menschen in Deutschland leiden an einer erblichen Erkrankung des Herz­muskels, sogenannten Kardiomyopathien. Diese können zu Rhythmus-Störungen und sogar Herzversagen führen, bleiben aber häufig lange unentdeckt. Ohne Vorwarnung kann das Herz dann plötzlich stillstehen: Beispiele dafür sind die tragischen Fälle von Fußballern, die auf dem Platz tot zusammenbrechen. Kardiomyopathien sollten daher frühzeitig erkannt und behandelt werden.

Die Vielzahl der genetischen Auslöser macht die Diagnostik mit den gängigen Methoden arbeitsintensiv und teuer. Daher untersuchen die behandelnden Kardiologen in der Regel nur wenige der 50 Gene auf mögliche Defekte. Das kostet sehr viel – und bringt häufig keinen Treffer. „Es ist wie mit der Nadel im Heuhaufen“, so Meder. Viele Betroffene werden daher gar nicht genetisch untersucht.

Bei dem neuen Verfahren, dem sogenannten „Targeted Next-Generation Sequencing“, werden alle 50 Gene gleichzeitig überprüft – ohne zusätzlichen Aufwand. Zunächst werden nur die für die Krankheit relevanten Abschnitte der Erbinformation (DNS) angereichert: Sie lagern sich an maßgeschneiderte Sonden an, während der uninteressante Teil der DNS ausgewaschen wird. Das gewonnene genetische Material wird in einem Arbeitsschritt analysiert und mittels eines Computers kritische Veränderungen ermittelt. In der Regel kann damit die Krankheitsursache mit nur einem Test geklärt werden.

Derzeit ist dieser Test in Heidelberg nur im Rahmen von Forschungs­projekten möglich. „Wir hoffen, unseren Patienten diese Methode bald auf breiter Basis anbieten zu können, um damit die Diagnostik bei Kardiomyopathien weiter zu verfeinern“, sagt Dr. Meder.

Auch Angehörige können sich testen lassen

Von der Diagnose profitieren auch Angehörige der Patienten: Sie können im Rahmen einer genetischen Beratung gezielt untersuchen lassen, ob der erbliche Gendefekt auch bei ihnen auftritt.

Das „Targeted Next-Generation Sequencing“ beschreiben Dr. Benjamin Meder und Biologe Jan Haas aus der Abteilung für Kardiologie der Universitätsklinik Heidelberg (Leiter Prof. Dr. Hugo A. Katus) sowie Professor Dr. Wolfgang Rottbauer, der inzwischen von Heidelberg an das Universitätsklinikum Ulm gewechselt ist, im Fachjournal „Circulation Cardiovascular Genetics“. Sie entwickelten das Verfahren in einem vom Universitätsklinikum Heidelberg koordinierten Forschungsverbund des Nationalen Genomforschungsnetzes (NGFN).

Kontakt:
Dr. med. Benjamin Meder
Abteilung für Kardiologie, Angiologie und Pneumologie
Medizinische Universitätsklinik Heidelberg
Im Neuenheimer Feld 350
69120 Heidelberg
Tel.: 06221 / 56 8610
E-Mail: benjamin.meder@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 10.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues Schiff für die Fischerei- und Meeresforschung
22.03.2017 | Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei

nachricht Mit voller Kraft auf Erregerjagd
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie