Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Punktgenau zusammengesteckt

02.02.2012
Zinkfingerproteine als ortsspezifische Adapter für DNA-Origami-Strukturen

DNA ist nicht nur der Träger der genetischen Information, DNA ist auch ein interessantes Nanobaumaterial. Ähnlich wie beim Origami, der japanischen Kunst des Papierfaltens, lässt sich beispielsweise ein langer DNA-Einzelstrang mithilfe kurzer DNA-Stückchen in eine nahezu beliebige dreidimensionale Form falten.


Rasterkraftmikroskopische Aufnahmen zeigten, dass die Streptavidinmoleküle immer spezifisch in der jeweils vorgesehenen Aussparung des Origami-Rechtecks gebunden waren.(c) Wiley-VCH

Diese Nanostruktur lässt sich zudem mit spezifischen Andockstellen für Proteine ausstatten. Ein Team um Takashi Morii von der Universität Kyoto stellt in der Zeitschrift Angewandte Chemie nun eine neue Methode vor, mit der die Proteine über spezielle „Adapter“ angeknüpft werden, so genannte Zinkfingerproteine.

Physiologische Vorgänge und chemische Reaktionen in Zellen laufen hochspezifisch in mehreren Reaktionsschritten ab. Mehrere Enzyme müssen kooperieren, um die aufeinanderfolgenden Schritte der notwendigen chemischen Transformationen zu katalysieren – wesentlich effizienter als künstliche Systeme dies vermögen. Die natürlichen Systeme lassen sich nur effektiv nachahmen, wenn sich die einzelnen Enzyme und Faktoren im richtigen nanoskopischen Abstand zueinander befinden. DNA-Origami-Strukturen lassen sich als eine Art „molekularer Stecktafeln” nutzen, um Enyzme und andere Proteine mit Nanometer-Präzision anzuordnen.

Verschiedene Methoden zur Anbindung von Proteinen an DNA-Origamis wurden bereits entwickelt, dazu ist aber meist eine Modifikation des Proteins notwendig. „Eine nur auf Proteinen basierende Methode wäre wünschenswert“, so Morii, „denn sie würde die Bindung von Proteinen an die Origamis vereinfachen und beschleunigen.“

Morii und sein Team setzen auf Zinkfingerproteine als „Adapter“. Eine Polypeptidkette eines Zinkfingerproteins bindet ein Zinkion und nimmt dabei eine stabile, kompakt gefaltete Form ein, die als „Zinkfinger“ bezeichnet wird und spezifisch an bestimmte DNA-Motive binden kann. Zinkfinger können so konstruiert werden, dass sie jedes gewünschte DNA-Motiv erkennen.

Die Wissenschaftler stellten rechteckige Origami-Strukturen her, die mehrere definierte Aussparungen enthielten. An diesen Stellen enthielten die Origamis verschiedene DNA-Erkennungsmotive für verschiedene Zinkfinger. Dann konstruierten sie Proteine, die an einem Ende Zinkfinger-Einheiten enthielten, am anderen Ende ein fluoreszierendes Protein oder ein Biotin-Molekül. Biotin bindet spezifisch an das große Protein Streptavidin. Rasterkraftmikroskopische Aufnahmen zeigten, dass die Streptavidinmoleküle immer spezifisch in der jeweils vorgesehenen Aussparung des Origami-Rechtecks gebunden waren.

„Unsere Ergebnisse belegen, dass Zinkfinger geeignete Adapter sind, um bequem Positionen einer DNA-Origami-Struktur ortsselektiv ansteuern zu können“, sagt Morii. „Mehrere verschiedene Adapter, die verschiedene Proteine tragen, können dabei voneinander unabhängig voneinander an definierte Stellen einer solchen Nanostruktur geknüpft werden.“

Angewandte Chemie: Presseinfo 04/2012

Autor: Takashi Morii, Kyoto University (Japan), http://akweb.iae.kyoto-u.ac.jp/material/en/index.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201108199

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie