Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Punktgenau zusammengesteckt

02.02.2012
Zinkfingerproteine als ortsspezifische Adapter für DNA-Origami-Strukturen

DNA ist nicht nur der Träger der genetischen Information, DNA ist auch ein interessantes Nanobaumaterial. Ähnlich wie beim Origami, der japanischen Kunst des Papierfaltens, lässt sich beispielsweise ein langer DNA-Einzelstrang mithilfe kurzer DNA-Stückchen in eine nahezu beliebige dreidimensionale Form falten.


Rasterkraftmikroskopische Aufnahmen zeigten, dass die Streptavidinmoleküle immer spezifisch in der jeweils vorgesehenen Aussparung des Origami-Rechtecks gebunden waren.(c) Wiley-VCH

Diese Nanostruktur lässt sich zudem mit spezifischen Andockstellen für Proteine ausstatten. Ein Team um Takashi Morii von der Universität Kyoto stellt in der Zeitschrift Angewandte Chemie nun eine neue Methode vor, mit der die Proteine über spezielle „Adapter“ angeknüpft werden, so genannte Zinkfingerproteine.

Physiologische Vorgänge und chemische Reaktionen in Zellen laufen hochspezifisch in mehreren Reaktionsschritten ab. Mehrere Enzyme müssen kooperieren, um die aufeinanderfolgenden Schritte der notwendigen chemischen Transformationen zu katalysieren – wesentlich effizienter als künstliche Systeme dies vermögen. Die natürlichen Systeme lassen sich nur effektiv nachahmen, wenn sich die einzelnen Enzyme und Faktoren im richtigen nanoskopischen Abstand zueinander befinden. DNA-Origami-Strukturen lassen sich als eine Art „molekularer Stecktafeln” nutzen, um Enyzme und andere Proteine mit Nanometer-Präzision anzuordnen.

Verschiedene Methoden zur Anbindung von Proteinen an DNA-Origamis wurden bereits entwickelt, dazu ist aber meist eine Modifikation des Proteins notwendig. „Eine nur auf Proteinen basierende Methode wäre wünschenswert“, so Morii, „denn sie würde die Bindung von Proteinen an die Origamis vereinfachen und beschleunigen.“

Morii und sein Team setzen auf Zinkfingerproteine als „Adapter“. Eine Polypeptidkette eines Zinkfingerproteins bindet ein Zinkion und nimmt dabei eine stabile, kompakt gefaltete Form ein, die als „Zinkfinger“ bezeichnet wird und spezifisch an bestimmte DNA-Motive binden kann. Zinkfinger können so konstruiert werden, dass sie jedes gewünschte DNA-Motiv erkennen.

Die Wissenschaftler stellten rechteckige Origami-Strukturen her, die mehrere definierte Aussparungen enthielten. An diesen Stellen enthielten die Origamis verschiedene DNA-Erkennungsmotive für verschiedene Zinkfinger. Dann konstruierten sie Proteine, die an einem Ende Zinkfinger-Einheiten enthielten, am anderen Ende ein fluoreszierendes Protein oder ein Biotin-Molekül. Biotin bindet spezifisch an das große Protein Streptavidin. Rasterkraftmikroskopische Aufnahmen zeigten, dass die Streptavidinmoleküle immer spezifisch in der jeweils vorgesehenen Aussparung des Origami-Rechtecks gebunden waren.

„Unsere Ergebnisse belegen, dass Zinkfinger geeignete Adapter sind, um bequem Positionen einer DNA-Origami-Struktur ortsselektiv ansteuern zu können“, sagt Morii. „Mehrere verschiedene Adapter, die verschiedene Proteine tragen, können dabei voneinander unabhängig voneinander an definierte Stellen einer solchen Nanostruktur geknüpft werden.“

Angewandte Chemie: Presseinfo 04/2012

Autor: Takashi Morii, Kyoto University (Japan), http://akweb.iae.kyoto-u.ac.jp/material/en/index.html

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201108199

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen
23.05.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Mikro-Lieferservice für Dünger
23.05.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie