Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Prototyp macht sichtbar, wie Wasser Schwimmer umströmt

29.07.2014

Bewegungsforscher der Universität Jena untersuchen undulatorisches Schwimmen

Wenn ein Studentensportler über 50 m Rückenschwimmen den Weltrekord knackt, dann muss er entweder ein Supertalent sein oder „schummeln“.


Die Bewegung der angeleuchteten Kügelchen am Schwimmer wird durch die Hochgeschwindigkeitskamera exakt aufgezeichnet und daraus werden im Computer die Strömungsfelder sichtbar gemacht und berechnet.

Foto: Jürgen Scheere/FSU Jena


Das Team der Jenaer Sportwissenschaftler (v.l.) Dr. Stefan Hochstein, Phillip Sonnenberg, Anvar Jakupov und Prof. Dr. Reinhard Blickhan bei der Auswertung der Strömungsvisualisierung am Schwimmer.

Foto: Jürgen Scheere/FSU Jena

Hill Taylor wurde bei seinem spektakulären Rennen 2011 in den USA disqualifiziert, da er die Strecke vollständig unter Wasser zurückgelegt hat; denn die Regeln erlauben nur eine Tauchphase von 15 Metern.

Doch der mit deutlichem Abstand eingeschwommene „Sieg“ des „Delphin-Mannes“ belegt eindrucksvoll, dass das sog. „undulatorische Schwimmen“ einen großen Geschwindigkeitsvorteil bietet.

„Dieser von den Fischen abgeschaute Stil, bei dem der Körper wellenförmig bewegt wird, ist eine der schnellsten Fortbewegungsmöglichkeiten unter Wasser“, erläutert Dr. Stefan Hochstein vom Lehrstuhl für Bewegungswissenschaft der Friedrich-Schiller-Universität Jena.

Die Bewegungsforscher haben in den vergangenen sieben Jahren diese Schwimmtechnik mit Unterstützung durch die Deutsche Forschungsgemeinschaft (DFG) ausführlich erforscht. Und gerade ist nach fast zweijähriger Entwicklungszeit ein erster Prototyp zur Strömungsvisualisierung am menschlichen Schwimmer fertiggestellt worden.

Damit können nun erstmals im Schwimmbecken die Strömungsfelder beim Schwimmen unter Wasser gemessen und die Strömungen sichtbar gemacht werden.

Erstmals numerische und experimentelle Berechnungen verglichen

„Im Wasser können wir während des Schwimmens keine Kräfte messen“, weist der Physiker Hochstein, der das Prototypen-Projekt leitet, auf die Schwierigkeiten hin. Und so wurden bisher die Strömungen immer nur durch numerische Simulationen berechnet. Die Jenaer Arbeitsgruppe um Prof. Dr. Reinhard Blickhan ist „die erste Gruppe auf der Welt, die numerische und experimentelle Berechnungen vergleichen kann“, freut sich Hochstein.

Möglich macht das die neue Gerätekombination, die dank einer Förderung durch die Ernst-Abbe-Stiftung und in Kooperation mit dem Institut für Optik und Quantenelektronik der Universität Jena entwickelt werden konnte. Insbesondere konnte hierdurch mit Anvar Jakupov ein Physiker gefördert werden, der in Zusammenarbeit mit dem Mechaniker Thomas Drafehn einen entscheidenden Anteil am Aufbau des Prototypen hatte.

Bestanden die ersten Messgeräte noch aus einer Hochgeschwindigkeitskamera, die nur durch ein Unterwasserfenster im Schwimmbecken einen begrenzten Ausschnitt filmen konnte, und einem anfälligen sowie teuren Laser, so haben die Jenaer Bewegungsforscher nun ein mobiles und günstiges Testequipment entwickelt.

Die teure Kamera wurde in ein wasserdichtes Gehäuse eingebaut und mit einer auf LEDs basierenden Beleuchtungseinheit verbunden; beides kann problemlos ins Wasserbecken getaucht werden. „Der große Vorteil dieses Systems liegt in der Robustheit gegenüber herkömmlichen Lasersystemen und den fast universellen örtlichen Einsatzmöglichkeiten“, sagt Hochstein.

„Zudem ist es schnell zu justieren und die Kosten für das System sind um mindestens den Faktor 10 geringer als herkömmliche Laser-Systeme zur Strömungsvisualisierung.“

Bei den Tests – die überwiegend in speziellen Forschungsbecken in Heidelberg stattfanden – werden kleine Kunststoffkügelchen mit der gleichen Dichte wie Wasser ins Becken geworfen, durch die der Schwimmer sich hindurchbewegt. Die Bewegung dieser Kügelchen wird durch die Hochgeschwindigkeitskamera exakt aufgezeichnet und daraus werden im Computer die Strömungsfelder sichtbar gemacht und berechnet.

Anwendungspotenzial bei Messung der Abnutzung hinter Brückenpfeilern

Damit sind nun die Strömungsvisualisierung und -feldmessung an schwer zugänglichen Orten oder an Orten, die aus sicherheitstechnischen oder organisatorischen Gründen keine Nutzung von Lasern erlauben, möglich. Neben dem Einsatz zur Optimierung von Schwimmbewegungen in Schwimmhallen kann das Gerät „auch zur Erforschung der Wirbelcharakteristik und somit der Fortbewegung von aquatischen Meeressäugern, die aufgrund ihrer Größe nicht in einen Strömungskanal passen, genutzt werden“, ist sich Hochstein sicher.

Weitere Anwendungen sind im technischen Bereich denkbar: „Perspektivisch könnte dieses System zur Messung der Verwirbelungen – und somit auch der Beanspruchung bzw. Abnutzung – hinter Brückenpfeilern oder Windrädern genutzt werden“.

Auch wenn nun dank der Jenaer Forschungen Taucher erstmals ganz im normalen Wasser betrachtet werden können: Noch ist das Gerät nicht serienreif. Dafür sind weitere Forschungen ebenso notwendig wie die Kooperation mit Unternehmen. „Es gab schon erste Gespräche“, verrät Hochstein, aber noch sind die Wissenschaftler der Uni Jena auf der Suche nach weiteren Partnern. Und dass selbst mit der Analysetechnik nicht sofort eine Verbesserung von Schwimmzeiten möglich ist, das weiß auch der ehemalige Triathlet Hochstein:

„Vor einer Nutzung der Erkenntnisse im Training müssen erst die Analysen erfolgen, wie die Beobachtungen sinnvoll in Schwimmtechnik umgesetzt werden können“. Doch die Trainer und Schwimmer hätten mit dem Jenaer Gerät eine funktionierende Analysemöglichkeit, um ihre eigene Strömung aktiv zu gestalten und zu sehen, wie sie das Wasser fassen – und dies zu nutzen, um regelkonform schneller zu werden.

Kontakt:
Dr. Stefan Hochstein / Prof. Dr. Reinhard Blickhan
Institut für Sportwissenschaft der Friedrich-Schiller-Universität Jena
Seidelstraße 20, 07749 Jena
Tel.: 03641 / 945709 oder 945701
E-Mail: Stefan.Hochstein[at]uni-jena.de / reinhard.blickhan[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Axel Burchardt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften