Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protonentransfer: Forscher finden molekularen Schutzmechanismus gegen lichtinduzierte Schädigungen

10.04.2017

Ein internationales Team aus Forschenden des Helmholtz-Zentrum Berlin (HZB) sowie aus Schweden und den USA hat einen Mechanismus untersucht, der Biomoleküle wie die Erbsubstanz DNA gegen Schädigung durch Licht schützt. Sie beobachteten, wie die Energie der einfallenden Photonen im Molekül aufgenommen wird ohne wichtige Bindungen des Biomoleküls zu beschädigen. Die Experimente fanden am Freie Elektronen-Laser LCLS in Kalifornien und an der Synchrotronquelle BESSY II des HZB in Berlin statt, wo mit der Methode der resonanten inelastischen Röntgenstreuung, RIXS, ein sehr empfindliches Messverfahren bereit steht.

Biomoleküle wie die Erbsubstanz DNA benötigen Schutzmechanismen gegen energiereiches Licht. Denn UV-Anteile aus dem Sonnenlicht würden sonst rasch dazu führen, dass Bindungen brechen und Moleküle zerfallen. Der so genannte Protonentransfer spielt dabei eine wichtige Rolle. Mit ihm kann ein DNA-Molekül die über das Licht eingestrahlte Energie wieder abgeben – dabei löst sich ein einzelnes Proton (Wasserstoffkern) – und andere chemische Bindungen bleiben erhalten.


Die Experimente zeigen: Lichtpulse können Wasserstoffkerne ablösen, ohne weitere Bindungen im Molekül zu zerstören.

Bild: Th. Splettstösser/HZB

Um den Prozess im Detail zu untersuchen, hat eine internationale Kooperation um Prof. Dr. Alexander Föhlisch, Institutsleiter am Helmholtz-Zentrum Berlin, in Kalifornien am LCLS-Laser des SLAC National Accelerator Laboratory und an der Berliner Synchrotronquelle BESSY II des HZB Experimente durchgeführt: Sie untersuchten ein verhältnismäßig einfaches Molekül, das 2-Thiopyridon (2-TP). Dieses Molekül hat ähnliche Eigenschaften wie die Bausteine der DNA und dient in der Bioforschung deshalb als Modellmolekül.

Die Forschergruppe regte zunächst gezielt das Stickstoff-Atom im Molekül mit sehr kurzen Röntgenpulsen im Femtosekundenbereich (10 -15 s) an. Die Ergebnisse, die nun im Fachblatt Angewandte Chemie publiziert sind, zeigen im Detail, wie sich nach der Anregung mit dem Lichtpuls das an das Stickstoff-Atom gebundene Proton ablöst.

"Erst einmal wollten wir diese Prozesse an einem einfachen Modellsystem untersuchen,” sagt Erstautor Sebastian Eckert, der bei Alexander Föhlisch an der Universität Potsdam und am Helmholtz-Zentrum Berlin seine Doktorarbeit schreibt. " Das Modellsystem 2-Thiopyridon ist geeignet, weil das Molekül klein genug ist, um es zu verstehen und nur ein einziges Stickstoff-Atom besitzt.

Nur durch den Vergleich zwischen den FEL-Messungen und Experimenten am Synchrotron BESSY II ließ sich der Mechanismus eindeutig zuordnen." Dabei hatte das Team erstmals auch die Methode der so genannten inelastischen Röntgenstreuung, RIXS, an BESSY II angewandt, um molekulare Veränderungen um das Stickstoff-Atom herum zu beobachten, die mit dem raschen Protonentransfer zusammenhängen und extrem schnell, innerhalb von Femtosekunden, ablaufen.

Durch die Kombination der Experimente mit theoretischen Simulationen konnte letzlich der Reaktionspfad herausgearbeitet werden. Diese Berechnungen führte der Doktorand Jesper Norell und Prof. Dr. Michael Odelius der Universität Stockholm im Rahmen des Helmholtz Virtuellen Instituts „Dynamic Pathways in Multidimensional Landscapes“ durch.

Zur Publikation in Angewandte Chemie, International Edition, 2017, doi:10.1002/anie.201700239:"Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-ray Scattering" Sebastian Eckert;, Jesper Norell;, Piter S. Miedema, Martin Beye,Mattis Fondell, Wilson Quevedo, Brian Kennedy, Markus Hantschmann,Annette Pietzsch, Benjamin Van Kuiken, Matthew Ross,Michael P. Minitti, Stefan P. Moeller, William F. Schlotter, Munira Khalil, Michael Odelius, Alexander Föhlisch.

Zur Kooperation: Die Kooperation besteht aus Wissenschaftlern der Universität Potsdam, des Helmholtz-Zentrum Berlin, der Universität Stockholm, der Universität Washington und LCLS (SLAC National Accelerator Laboratory, operated by Stanford University for the U.S. Department of Energy's Office of Science). Sebastian Eckert promoviert im Rahmen des ERC Advanced Grants EDAX von Prof. Dr. Alexander Föhlisch an der Universität Potsdam. Jesper Norell und Michael Odelius kollaborieren in Rahmen des Virtuellen Instituts VI419 „Dynamic Pathways in Multidimensional Landscapes“ der Helmholtz-Gemeinschaft.

Kontakt zum Experten:
Prof. Dr. Alexander Föhlisch
Tel: (030) 8062-14985
E-Mail: alexander.foehlisch@helmholtz-berlin.de

Pressestelle HZB
Dr. Antonia Rötger
Tel. (030) 8062-43733
E-Mail: antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14646&sprache=de&ty...
http://onlinelibrary.wiley.com/doi/10.1002/anie.201700239/abstract;jsessionid=E1...

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht CHP1-Mutation verursacht zerebelläre Ataxie
23.01.2018 | Uniklinik Köln

nachricht Lebensrettende Mikrobläschen
23.01.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks Industrie & Wirtschaft
Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics