Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protonen-Rennen in der Zelle simuliert

11.06.2012
Wie sich Protonen an den Membranwänden biologischer Zellen fortbewegen, ist eine der entscheidenden Fragen zum Verständnis bioenergetischer Prozesse.

Jülicher und Linzer Wissenschaftler haben mit experimentellen Untersuchungen und Computersimulationen in einem vereinfachten Modell jetzt wichtige Erkenntnisse über die Transportprozesse gewonnen.


Ab initio Molekulardynamik Simulation eines Protons (gelbe Kugel) auf einer Grenzfläche aus Wasser (rote Kugeln: Sauerstoff, weiße Kugeln: Wasserstoff) und einer hydrophoben Oberfläche (gepunktetes blaues Gitter) aus n-Dekan (grüne Stäbchen). Die eingefügte Schemazeichnung zeigt den Mechanismus der schnellen Protonenwanderung in der zweiten Wasserschicht (orange), während Protonen in der ersten Wasserschicht (gelb) an der Oberfläche haften. Quelle: Forschungszentrum Jülich


Protonenwanderung entlang einer wasserabweisenden, hydrophoben Oberfläche (n-Dekan als grüne Stäbchen, links im Bild). Das Proton springt von einem Wassermolekül (rot-weiße Stäbchen) zum nächsten, wobei die aktuelle Position durch die transparente gelbe Kugel angezeigt wird. Unbeteiligte Wassermoleküle sind hellrot dargestellt. In der ersten Wasserschicht bleibt das Proton in direkter Nachbarschaft zur hydrophoben Oberfläche zunächst haften. Sobald das Proton in die zweite Wasserschicht wandert, kann es zu benachbarten Wassermolekülen springen und sich nahezu ungehindert in dieser Schicht entlang der Oberfläche fortbewegen ohne dabei vollständig in die wässrige Phase abzuwandern.
Quelle: Forschungszentrum Jülich

Sie haben eine Grenzschicht entdeckt, in der Protonen praktisch ungehindert entlangwandern können, ohne die Bindung zur Membranoberfläche zu verlieren. Die Ergebnisse wurden online in der aktuellen Ausgabe der Fachzeitschrift PNAS veröffentlicht (DOI: 10.1073/pnas.1121227109).

Der Protonen-Transport spielt eine Schlüsselrolle beim Zellstoffwechsel, etwa bei der Bildung von Adenosintriphosphat (ATP), der Hauptenergiequelle in Zellen aller bekannten Organismen. Spezielle Enzyme wirken dabei als „Protonenpumpen“. Sie steuern die Prozesse, indem sie innerhalb und außerhalb von Zellen und Teilen der Zelle wie den Mitochondrien einen Protonengradienten, also eine unterschiedlich starke Protonenkonzentration, herbeiführen.

Die Membranoberfläche ist dabei ein wichtiger Weg für den Protonen-Transport. Die Protonen wandern dort erstaunlich schnell, ähnlich schnell wie in reinem Wasser. Welche Mechanismen dafür verantwortlich sind, dass sie nicht durch die Bindung an die Membranoberfläche abgebremst werden, war bis jetzt ungeklärt.

Wissenschaftler der German Research School for Simulation Sciences und des Bereichs „Computational Biomedicine“ des Institutes for Advanced Simulation (IAS-5) am Forschungszentrum Jülich berichten in PNAS zusammen mit der österreichischen Gruppe von Peter Pohl aus dem Institut für Biophysik der Universität Linz über entscheidende Fortschritte bei der Lösung dieses Rätsels, die sie mit einem minimalistischen Modellsystem erzielt haben.

Dazu haben sie die Protonendynamik auf einer Grenzfläche aus Wasser und einer hydrophoben, wasserabweisenden, Oberfläche (n-Dekan) mit sogenannten mikrofluorimetrischen Experimenten beobachtet. Anschließend wurde der Vorgang in aufwendigen Molekulardynamik Simulationen, die quantenmechanische Wechselwirkungen zwischen den Atomen und Molekülen berücksichtigen, auf dem Jülicher Supercomputer JUGENE nachgestellt.

Das Team konnte zeigen, dass die Protonen in einer ersten, direkt an der hydrophoben Membranoberfläche liegenden Wasserschicht größtenteils haften bleiben. Darüber hinaus konnte es aber noch eine zweite, weiter außen liegende Grenzschicht ausmachen, in der sich die Protonen praktisch ungehindert schnell bewegen können. Gleichzeitig bestehen in dieser Schicht ausreichend starke Anziehungskräfte, die verhindern, dass die Protonen vollständig in die wässrige Phase abwandern. Die Berechnungen wurden durch den europäischen Verbund für das Hochleistungsrechnen PRACE gefördert. Auf einem einzelnen Standard-PC hätten sie fast 5.000 Jahre gedauert, der Jülicher Parallelrechner JUGENE benötigte für die insgesamt 40 Millionen Prozessorstunden „nur“ 100 Tage.

Originalveröffentlichung:
Chao Zhang, Denis G. Knyazev, Yana A. Vereshchaga, Emiliano Ippoliti, Trung Hai Nguyen, Paolo Carloni, Peter Pohl
Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a
pathway for lateral proton diffusion
Proc. Natl. Acad. Sci. USA, 2012
DOI: 10.1073/pnas.1121227109
Ansprechpartner:
Prof. Dr. Paolo Carloni
Tel. 02461 61-8941
p.carloni@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-06-11PNAS_Protonenrennen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten