Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protonen-Rennen in der Zelle simuliert

11.06.2012
Wie sich Protonen an den Membranwänden biologischer Zellen fortbewegen, ist eine der entscheidenden Fragen zum Verständnis bioenergetischer Prozesse.

Jülicher und Linzer Wissenschaftler haben mit experimentellen Untersuchungen und Computersimulationen in einem vereinfachten Modell jetzt wichtige Erkenntnisse über die Transportprozesse gewonnen.


Ab initio Molekulardynamik Simulation eines Protons (gelbe Kugel) auf einer Grenzfläche aus Wasser (rote Kugeln: Sauerstoff, weiße Kugeln: Wasserstoff) und einer hydrophoben Oberfläche (gepunktetes blaues Gitter) aus n-Dekan (grüne Stäbchen). Die eingefügte Schemazeichnung zeigt den Mechanismus der schnellen Protonenwanderung in der zweiten Wasserschicht (orange), während Protonen in der ersten Wasserschicht (gelb) an der Oberfläche haften. Quelle: Forschungszentrum Jülich


Protonenwanderung entlang einer wasserabweisenden, hydrophoben Oberfläche (n-Dekan als grüne Stäbchen, links im Bild). Das Proton springt von einem Wassermolekül (rot-weiße Stäbchen) zum nächsten, wobei die aktuelle Position durch die transparente gelbe Kugel angezeigt wird. Unbeteiligte Wassermoleküle sind hellrot dargestellt. In der ersten Wasserschicht bleibt das Proton in direkter Nachbarschaft zur hydrophoben Oberfläche zunächst haften. Sobald das Proton in die zweite Wasserschicht wandert, kann es zu benachbarten Wassermolekülen springen und sich nahezu ungehindert in dieser Schicht entlang der Oberfläche fortbewegen ohne dabei vollständig in die wässrige Phase abzuwandern.
Quelle: Forschungszentrum Jülich

Sie haben eine Grenzschicht entdeckt, in der Protonen praktisch ungehindert entlangwandern können, ohne die Bindung zur Membranoberfläche zu verlieren. Die Ergebnisse wurden online in der aktuellen Ausgabe der Fachzeitschrift PNAS veröffentlicht (DOI: 10.1073/pnas.1121227109).

Der Protonen-Transport spielt eine Schlüsselrolle beim Zellstoffwechsel, etwa bei der Bildung von Adenosintriphosphat (ATP), der Hauptenergiequelle in Zellen aller bekannten Organismen. Spezielle Enzyme wirken dabei als „Protonenpumpen“. Sie steuern die Prozesse, indem sie innerhalb und außerhalb von Zellen und Teilen der Zelle wie den Mitochondrien einen Protonengradienten, also eine unterschiedlich starke Protonenkonzentration, herbeiführen.

Die Membranoberfläche ist dabei ein wichtiger Weg für den Protonen-Transport. Die Protonen wandern dort erstaunlich schnell, ähnlich schnell wie in reinem Wasser. Welche Mechanismen dafür verantwortlich sind, dass sie nicht durch die Bindung an die Membranoberfläche abgebremst werden, war bis jetzt ungeklärt.

Wissenschaftler der German Research School for Simulation Sciences und des Bereichs „Computational Biomedicine“ des Institutes for Advanced Simulation (IAS-5) am Forschungszentrum Jülich berichten in PNAS zusammen mit der österreichischen Gruppe von Peter Pohl aus dem Institut für Biophysik der Universität Linz über entscheidende Fortschritte bei der Lösung dieses Rätsels, die sie mit einem minimalistischen Modellsystem erzielt haben.

Dazu haben sie die Protonendynamik auf einer Grenzfläche aus Wasser und einer hydrophoben, wasserabweisenden, Oberfläche (n-Dekan) mit sogenannten mikrofluorimetrischen Experimenten beobachtet. Anschließend wurde der Vorgang in aufwendigen Molekulardynamik Simulationen, die quantenmechanische Wechselwirkungen zwischen den Atomen und Molekülen berücksichtigen, auf dem Jülicher Supercomputer JUGENE nachgestellt.

Das Team konnte zeigen, dass die Protonen in einer ersten, direkt an der hydrophoben Membranoberfläche liegenden Wasserschicht größtenteils haften bleiben. Darüber hinaus konnte es aber noch eine zweite, weiter außen liegende Grenzschicht ausmachen, in der sich die Protonen praktisch ungehindert schnell bewegen können. Gleichzeitig bestehen in dieser Schicht ausreichend starke Anziehungskräfte, die verhindern, dass die Protonen vollständig in die wässrige Phase abwandern. Die Berechnungen wurden durch den europäischen Verbund für das Hochleistungsrechnen PRACE gefördert. Auf einem einzelnen Standard-PC hätten sie fast 5.000 Jahre gedauert, der Jülicher Parallelrechner JUGENE benötigte für die insgesamt 40 Millionen Prozessorstunden „nur“ 100 Tage.

Originalveröffentlichung:
Chao Zhang, Denis G. Knyazev, Yana A. Vereshchaga, Emiliano Ippoliti, Trung Hai Nguyen, Paolo Carloni, Peter Pohl
Water at hydrophobic interfaces delays proton surface-to-bulk transfer and provides a
pathway for lateral proton diffusion
Proc. Natl. Acad. Sci. USA, 2012
DOI: 10.1073/pnas.1121227109
Ansprechpartner:
Prof. Dr. Paolo Carloni
Tel. 02461 61-8941
p.carloni@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

Tobias Schlößer | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-06-11PNAS_Protonenrennen.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie