Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinteam stellt molekulare Fässer her

05.08.2013
Forscher zeigen, dass zwei Proteinmaschinen bei der Ausbildung von Fassstrukturen in den Mitochondrien zusammenarbeiten

Die Arbeitsgruppen von Prof. Dr. Nikolaus Pfanner, Privatdozent Dr. Nils Wiedemann und Privatdozent Dr. Thomas Becker der Albert-Ludwigs-Universität Freiburg haben gemeinsam mit weiteren Kolleginnen und Kollegen nachgewiesen, wie molekulare Protein-Fässer in der äußeren Membran der Mitochondrien, den Kraftwerken der Zellen, entstehen. Dabei haben sie herausgefunden, dass zwei Proteinmaschinen auf unerwartete Weise kooperieren. Die Forscherinnen und Forscher publizierten die Ergebnisse in der Fachzeitschrift „Cell“.


Die Proteinmaschinen TOM und SAM sind über Tom22 miteinander verbunden und arbeiten in der Reifung von Proteinen mit beta-Fassstruktur zusammen. Modifiziert nach Becker et al., 2008; Biochim. Biophys. Acta 1777, 447-563
© Thomas Becker (BBA-2008)

Mitochondrien sind für das Überleben der Zelle unerlässlich. Sie stellen zum Beispiel die Energie für den Zellstoffwechsel bereit. Mitochondrien sind von zwei Membranen umgeben. Die äußere Membran enthält charakteristische Proteine mit einem fassähnlichen Aufbau, der beta-Fassstruktur. Sie durchspannen die Membran und sind für den Transport von Proteinen und Stoffwechselprodukten in die Mitochondrien entscheidend.

Die Proteine werden im Zytosol der Zelle als Vorstufen hergestellt und erhalten erst innerhalb des Mitochondriums ihre reife Fassstruktur. Dazu werden sie durch die Pore des Proteinkomplexes TOM, der Translokase der Außenmembran der Mitochondrien, importiert und zu einer zweiten Proteinmaschine der Außenmembran, der Sortierungs- und Assemblierungsmaschine SAM, transportiert. Der SAM-Komplex schließlich baut die Proteine in die Membran ein. Die einzelnen Schritte, die zur Ausbildung der beta-Fassstruktur führen, und der Transfer des Vorstufenproteins von TOM zu SAM waren bisher unverstanden.

Im Rahmen einer Kooperation zwischen dem Sonderforschungsbereich 746 „Funktionelle Spezifität durch Kopplung und Modifikation von Proteinen“, dem Exzellenzcluster BIOSS Center for Biological Signalling Studies und der Spemann Graduiertenschule für Biologie und Medizin analysierten die Forscher die Bildung der beta-Fassstruktur. Das Team um Nils Wiedemann zeigte, dass die beta-Fassstruktur am SAM-Komplex entsteht. Der Doktorand Jian Qiu entdeckte, dass das Rezeptorprotein Tom22 eine zentrale Rolle in diesem Prozess spielt.

Dies ist überraschend, da man bisher davon ausging, dass TOM und SAM unabhängige Proteinmaschinen sind. Ergebnisse der Arbeitsgruppe von Thomas Becker zeigten aber, dass beide im direkten Kontakt miteinander stehen. Tom22 verbindet beide Komplexe, wie die Doktorandin Lena-Sophie Wenz herausfand. Fehlt Tom22, führt dies zum Verlust der molekularen Brücke zwischen TOM und SAM – was die Bildung von beta-Fassstrukturen erheblich beeinträchtigt. Die Ergebnisse dieser Studie zeigen, dass die direkte Übergabe des importierten Proteins vom TOM-Komplex zum SAM-Komplex eine effiziente Bildung mitochondrialer beta-Fassstrukturen erlaubt.

Originalveröffentlichung:
Jian Qiu, Lena-Sophie Wenz, Ralf M. Zerbes, Silke Oeljeklaus, Maria Bohnert, David A. Stroud, Christophe Wirth, Lars Ellenrieder, Nicolas Thornton, Stephan Kutik, Sebastian Wiese, Agnes Schulze-Specking, Nicole Zufall, Agnieszka Chacinska, Bernard Guiard, Carola Hunte, Bettina Warscheid, Martin van der Laan, Nikolaus Pfanner, Nils Wiedemann, and Thomas Becker (2013) Coupling of Mitochondrial Import and Export Translocases by Receptor-Mediated Supercomplex Formation. Cell, Volume 154, Issue 3, 596-608, doi: 10.1016/j.cell.2013.06.033
Kontakt:
PD Dr. Thomas Becker
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5243
E-Mail: thomas.becker@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.uni-freiburg.de
http://www.pr.uni-freiburg.de/pm/2013/pm.2013-08-05.215-en?set_language=en

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält
22.05.2017 | Ruhr-Universität Bochum

nachricht Myrte schaltet „Anstandsdame“ in Krebszellen aus
22.05.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie