Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinpaar steuert Informationsfluss in die Schaltzentrale des Gedächtnisses

25.07.2014

Neue Erkenntnisse über die Verknüpfung von Nervenzellen an der Schnittstelle zum Hippokampus

Neurowissenschaftlern aus Bonn und Heidelberg sind neue Einblicke in die Funktionsweise des Gehirns gelungen. An Gewebeproben von Mäusen konnten die Wissenschaftler des DZNE und des Deutschen Krebsforschungszentrums (DKFZ) nachvollziehen, wie zwei bestimmte Proteine auf die Schaltzentrale des Gedächtnisses einwirken.


Körnerzellen sind über lange Fortsätze (Dendriten) mit anderen Zellen verbunden. Die eigentlichen Kontaktstellen (Synapsen) liegen auf dornartigen Ausstülpungen (im Englischen "Spines" genannt). Diese sind in der Computerdarstellung grün gefärbt. Bildquelle: DZNE/Michaela Müller

Die Moleküle mit der Bezeichnung „CKAMP44“ beziehungsweise „TARP Gamma-8“, die in ähnlicher Form auch beim Menschen vorkommen, wirken auf die Verknüpfung von Nervenzellen und beeinflussen die Übertragung von Nervensignalen in den Hippokampus. Diese Hirnregion ist an Lernprozessen und an der Entstehung von Erinnerungen maßgeblich beteiligt.

Die Studienergebnisse sind im Fachjournal Neuron veröffentlicht.Die Funktion des Gehirns beruht auf einem regen Austausch zwischen den Nervenzellen, den Neuronen. Dafür sind sie zu einem Geflecht verwoben, über das unablässig Signale wandern. Allerdings sind die Zellen nicht direkt miteinander verknüpft. In der Kontaktzone – der Synapse – sind sie jeweils durch einen hauchdünnen Spalt voneinander getrennt. Auf diesem Streckenabschnitt wirken Neurotransmitter, die das Nervensignal von einer Zelle zur nächsten übermitteln.

Körnerzellen sind über lange Fortsätze (Dendriten) mit anderen Zellen verbunden. Die eigentlichen Kontaktstellen (Synapsen) liegen auf dornartigen Ausstülpungen (im Englischen "Spines" genannt). Diese sind in der Computerdarstellung grün gefärbt. Bildquelle: DZNE/Michaela Müller

Docking-Stationen

Dabei kommen Rezeptoren ins Spiel. Diese Molekülkomplexe in der Hülle der Empfängerzelle sind Andockstellen für Botenstoffe, die die Senderzelle entlässt. Die Bindung des Botenstoffes an die Rezeptoren löst einen elektrischen Impuls aus – damit wird das Nervensignal an das nächste Neuron weitergegegeben.

Für die aktuelle Studie nahm ein Team um Dr. Jakob von Engelhardt sogenannte AMPA-Rezeptoren in Augenschein. An diese bindet der Neurotransmitter Glutamat. Sie sind im Gehirn besonders häufig vertreten. In diesem Fall konzentrierten sich die Forscher jedoch gezielt auf eine bestimmte Region. „Wir haben uns AMPA-Rezeptoren in einem Bereich des Gehirns angeschaut, der den Haupteingang zum Hippokampus darstellt“, erläutert von Engelhardt, der für das DZNE und das DKFZ tätig ist. „Der Hippokampus ist das zentrale Hirnareal für Lernen und Gedächtnisbildung. Hier werden beispielsweise Sinneseindrücke verarbeitet und miteinander kombiniert. Deshalb haben wir uns gefragt, wie der Informationsfluss in den Hippokampus gesteuert wird.“

Helfendes Duo

Konkret widmeten sich die Forscher zwei Eiweißmolekülen: „CKAMP44“ und „TARP Gamma-8“. Sie kommen gemeinsam mit den AMPA-Rezeptoren in den sogenannten Körnerzellen vor – das sind jene Neuronen, über die der Hippokampus Signale empfängt. Bereits bekannt war, dass diese Proteine mit AMPA-Rezeptoren einen Proteinkomplex bilden. „Wir haben nun festgestellt, dass sie die Funktion der Glutamat-Rezeptoren maßgeblich beeinflussen. Jedes Protein auf seine eigene Art, denn chemisch sind sie komplett unterschiedlich“, so der Neurowissenschaftler. „Damit eine Nervenzelle Signale aufnehmen kann, kommt es also nicht allein auf die eigentlichen Rezeptoren an. CKAMP44 und TARP Gamma-8 sind genauso von Bedeutung. Ihre Funktion lässt sich von der Funktion der Rezeptoren gar nicht trennen.“

Das ergab die Untersuchung von Hirnproben, die die Forscher Mäusen entnommen hatten. Dabei verglichen sie Mäuse mit natürlichem Erbgut mit genetisch veränderten Tieren. Letzteren fehlte die Erbinformation für­ CKAMP44 und TARP Gamma-8 oder sie konnten nur eines dieser Eiweißmoleküle herstellen.

Dauerhafte Wirkung

Unter anderem stellten die Forscher fest, dass beide Proteine den Transport von Glutamat-Rezeptoren an die Zelloberfläche fördern. „Damit beeinflussen sie, wie empfänglich die Nervenzelle für eingehende Signale ist“, sagt von Engelhardt.

Entscheidend für die Signalaufnahme ist jedoch nicht nur, dass die Rezeptoren zur Zellmembran gelangen, sondern auch, wie lange sie dort verweilen. Denn die Zellmembran ist dynamisch: ständig werden Bausteine ein- und ausgebaut. Darauf haben die Hilfsmoleküle unterschiedliche Wirkung, stellten die Forscher fest: Damit die AMPA-Rezeptoren in der Zellhülle über längere Zeit verankert bleiben, ist TARP Gamma-8 notwendig. CKAMP44 hingegen spielt dafür keine Rolle. „Synapsen verändern ihre Kommunikation in Abhängigkeit davon, wie stark sie beansprucht werden. Diese aktivitätsabhängige Anpassung nennt man Plastizität. Die Veränderungen sind manchmal nur vorübergehend, manchmal von langer Dauer“, erläutert von Engelhardt. „TARP Gamma-8 beeinflusst die Langzeitplastizität. Es verleiht der Zelle die Fähigkeit, die synaptische Kommunikation über längere Zeit zu verstärken. Je mehr Rezeptoren auf der Empfängerseite der Synapse vorkommen, desto besser ist die neuronale Verbindung.“

Die Anzahl der Rezeptoren ändert sich nicht plötzlich, sondern bleibt über einen gewissen Zeitraum weitgehend stabil. „Hier geht es um einen Effekt, der Stunden, Tage oder noch länger andauern kann. Diese Langzeitwirkung ist eine Voraussetzung dafür, dass Erinnerungen entstehen können. Damit etwas im Gedächtnis bleibt, muss sich die Verbindung zwischen Nervenzellen dauerhaft verändern“, sagt der Wissenschaftler.

Neuronales Dauerfeuer

Wirkung zeigten CKAMP44 und TARP Gamma-8 aber auch auf kurzer Zeitskala. Das Forscherteam fand heraus, dass die Moleküle einen Effekt darauf haben, wie schnell die AMPA-Rezeptoren wieder empfangsbereit sind. „Hat Glutamat angedockt, dauert es einen gewissen Augenblick, bis der Rezeptor auf den nächsten Neurotransmitter reagieren kann. CKAMP44 verlängert diese Zeitspanne. Im Gegensatz dazu führt TARP Gamma-8 dazu, dass sich der Rezeptor schneller erholt“, so von Engelhardt.

Infolgedessen schwächt CKAMP44 die synaptische Verbindung vorübergehend ab, wohingegen TARP Gamma-8 die Kommunikation verstärkt. Durch das Zusammenspiel der Proteine kann eine Synapse ihre Empfindlichkeit auf ein bestimmtes Niveau einpegeln. Dieser Zustand kann Millisekunden bis zu einigen Sekunden andauern, bevor die Empfangsstärke erneut angepasst wird. Fachleute sprechen von „Kurzzeitplastizität“.

„Letztlich beeinflussen diese Moleküle, wie gut die Nervenzelle auf rasch aufeinanderfolgende Signale reagieren kann“, fasst der Wissenschaftler die Befunde zusammen. „Über derlei Dauerfeuer können Netzwerke von Neuronen ihre Aktivität aufeinander abstimmen. Das ist im Gehirn ein ganz normaler Vorgang.“

Empfindliches Gleichgewicht

Zur Überraschung der Forscher zeigte sich, dass die beiden Proteine neben den synaptischen Eigenschaften auch die Gestalt der Nervenzellen mitbestimmen: Fehlen die Helfermoleküle, so haben die Neuronen weniger Fortsätze, mit denen sie mit anderen Nervenzellen in Verbindung treten. „Der Organismus kann mittels CKAMP44 und TARP Gamma-8 neuronale Verbindungen auf mehrfache Weise regulieren“, erklärt von Engelhardt. „Dabei kommt es auf die Balance zwischen beiden Partnern an, da sie teils eine konträre Wirkung haben. Wie die Nervenzellen des Hippokampus auf Signale aus anderen Hirnregionen reagieren, hängt somit stark von dem Vorhandensein und Verhältnis dieser Moleküle ab.“

Da die beiden Moleküle so unmittelbar auf die Struktur und die Funktion der Synapsen der Körnerzellen einwirken, hält es Jakob von Engelhardt für durchaus wahrscheinlich, dass sie einen Einfluss auch auf das Lernen und das Gedächtnis haben.


Originalveröffentlichung
Co-expressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function.
Konstantin Khodosevich, Eric Jacobi, Paul Farrow, Anton Schulmann, Alexandru Rusu, Ling Zhang, Rolf Sprengel, Hannah Monyer, Jakob von Engelhardt. Neuron (2014). doi:10.1016/j.neuron.2014.07.004

Link zum Video-Abstract
http://youtu.be/YHT0a7DEuHs


Kontakt
Dr. Marcus Neitzert
Wissenschaftsredakteur
DZNE
0228/43302-271
marcus.neitzert(at)dzne.de

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
DKFZ, Heidelberg
06221/422854
s.seltmann(at)dkfz.de

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dzne.de/ueber-uns/presse/meldungen/2014/pressemitteilung-nr-10.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops