Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinpaar steuert Informationsfluss in die Schaltzentrale des Gedächtnisses

25.07.2014

Neue Erkenntnisse über die Verknüpfung von Nervenzellen an der Schnittstelle zum Hippokampus

Neurowissenschaftlern aus Bonn und Heidelberg sind neue Einblicke in die Funktionsweise des Gehirns gelungen. An Gewebeproben von Mäusen konnten die Wissenschaftler des DZNE und des Deutschen Krebsforschungszentrums (DKFZ) nachvollziehen, wie zwei bestimmte Proteine auf die Schaltzentrale des Gedächtnisses einwirken.


Körnerzellen sind über lange Fortsätze (Dendriten) mit anderen Zellen verbunden. Die eigentlichen Kontaktstellen (Synapsen) liegen auf dornartigen Ausstülpungen (im Englischen "Spines" genannt). Diese sind in der Computerdarstellung grün gefärbt. Bildquelle: DZNE/Michaela Müller

Die Moleküle mit der Bezeichnung „CKAMP44“ beziehungsweise „TARP Gamma-8“, die in ähnlicher Form auch beim Menschen vorkommen, wirken auf die Verknüpfung von Nervenzellen und beeinflussen die Übertragung von Nervensignalen in den Hippokampus. Diese Hirnregion ist an Lernprozessen und an der Entstehung von Erinnerungen maßgeblich beteiligt.

Die Studienergebnisse sind im Fachjournal Neuron veröffentlicht.Die Funktion des Gehirns beruht auf einem regen Austausch zwischen den Nervenzellen, den Neuronen. Dafür sind sie zu einem Geflecht verwoben, über das unablässig Signale wandern. Allerdings sind die Zellen nicht direkt miteinander verknüpft. In der Kontaktzone – der Synapse – sind sie jeweils durch einen hauchdünnen Spalt voneinander getrennt. Auf diesem Streckenabschnitt wirken Neurotransmitter, die das Nervensignal von einer Zelle zur nächsten übermitteln.

Körnerzellen sind über lange Fortsätze (Dendriten) mit anderen Zellen verbunden. Die eigentlichen Kontaktstellen (Synapsen) liegen auf dornartigen Ausstülpungen (im Englischen "Spines" genannt). Diese sind in der Computerdarstellung grün gefärbt. Bildquelle: DZNE/Michaela Müller

Docking-Stationen

Dabei kommen Rezeptoren ins Spiel. Diese Molekülkomplexe in der Hülle der Empfängerzelle sind Andockstellen für Botenstoffe, die die Senderzelle entlässt. Die Bindung des Botenstoffes an die Rezeptoren löst einen elektrischen Impuls aus – damit wird das Nervensignal an das nächste Neuron weitergegegeben.

Für die aktuelle Studie nahm ein Team um Dr. Jakob von Engelhardt sogenannte AMPA-Rezeptoren in Augenschein. An diese bindet der Neurotransmitter Glutamat. Sie sind im Gehirn besonders häufig vertreten. In diesem Fall konzentrierten sich die Forscher jedoch gezielt auf eine bestimmte Region. „Wir haben uns AMPA-Rezeptoren in einem Bereich des Gehirns angeschaut, der den Haupteingang zum Hippokampus darstellt“, erläutert von Engelhardt, der für das DZNE und das DKFZ tätig ist. „Der Hippokampus ist das zentrale Hirnareal für Lernen und Gedächtnisbildung. Hier werden beispielsweise Sinneseindrücke verarbeitet und miteinander kombiniert. Deshalb haben wir uns gefragt, wie der Informationsfluss in den Hippokampus gesteuert wird.“

Helfendes Duo

Konkret widmeten sich die Forscher zwei Eiweißmolekülen: „CKAMP44“ und „TARP Gamma-8“. Sie kommen gemeinsam mit den AMPA-Rezeptoren in den sogenannten Körnerzellen vor – das sind jene Neuronen, über die der Hippokampus Signale empfängt. Bereits bekannt war, dass diese Proteine mit AMPA-Rezeptoren einen Proteinkomplex bilden. „Wir haben nun festgestellt, dass sie die Funktion der Glutamat-Rezeptoren maßgeblich beeinflussen. Jedes Protein auf seine eigene Art, denn chemisch sind sie komplett unterschiedlich“, so der Neurowissenschaftler. „Damit eine Nervenzelle Signale aufnehmen kann, kommt es also nicht allein auf die eigentlichen Rezeptoren an. CKAMP44 und TARP Gamma-8 sind genauso von Bedeutung. Ihre Funktion lässt sich von der Funktion der Rezeptoren gar nicht trennen.“

Das ergab die Untersuchung von Hirnproben, die die Forscher Mäusen entnommen hatten. Dabei verglichen sie Mäuse mit natürlichem Erbgut mit genetisch veränderten Tieren. Letzteren fehlte die Erbinformation für­ CKAMP44 und TARP Gamma-8 oder sie konnten nur eines dieser Eiweißmoleküle herstellen.

Dauerhafte Wirkung

Unter anderem stellten die Forscher fest, dass beide Proteine den Transport von Glutamat-Rezeptoren an die Zelloberfläche fördern. „Damit beeinflussen sie, wie empfänglich die Nervenzelle für eingehende Signale ist“, sagt von Engelhardt.

Entscheidend für die Signalaufnahme ist jedoch nicht nur, dass die Rezeptoren zur Zellmembran gelangen, sondern auch, wie lange sie dort verweilen. Denn die Zellmembran ist dynamisch: ständig werden Bausteine ein- und ausgebaut. Darauf haben die Hilfsmoleküle unterschiedliche Wirkung, stellten die Forscher fest: Damit die AMPA-Rezeptoren in der Zellhülle über längere Zeit verankert bleiben, ist TARP Gamma-8 notwendig. CKAMP44 hingegen spielt dafür keine Rolle. „Synapsen verändern ihre Kommunikation in Abhängigkeit davon, wie stark sie beansprucht werden. Diese aktivitätsabhängige Anpassung nennt man Plastizität. Die Veränderungen sind manchmal nur vorübergehend, manchmal von langer Dauer“, erläutert von Engelhardt. „TARP Gamma-8 beeinflusst die Langzeitplastizität. Es verleiht der Zelle die Fähigkeit, die synaptische Kommunikation über längere Zeit zu verstärken. Je mehr Rezeptoren auf der Empfängerseite der Synapse vorkommen, desto besser ist die neuronale Verbindung.“

Die Anzahl der Rezeptoren ändert sich nicht plötzlich, sondern bleibt über einen gewissen Zeitraum weitgehend stabil. „Hier geht es um einen Effekt, der Stunden, Tage oder noch länger andauern kann. Diese Langzeitwirkung ist eine Voraussetzung dafür, dass Erinnerungen entstehen können. Damit etwas im Gedächtnis bleibt, muss sich die Verbindung zwischen Nervenzellen dauerhaft verändern“, sagt der Wissenschaftler.

Neuronales Dauerfeuer

Wirkung zeigten CKAMP44 und TARP Gamma-8 aber auch auf kurzer Zeitskala. Das Forscherteam fand heraus, dass die Moleküle einen Effekt darauf haben, wie schnell die AMPA-Rezeptoren wieder empfangsbereit sind. „Hat Glutamat angedockt, dauert es einen gewissen Augenblick, bis der Rezeptor auf den nächsten Neurotransmitter reagieren kann. CKAMP44 verlängert diese Zeitspanne. Im Gegensatz dazu führt TARP Gamma-8 dazu, dass sich der Rezeptor schneller erholt“, so von Engelhardt.

Infolgedessen schwächt CKAMP44 die synaptische Verbindung vorübergehend ab, wohingegen TARP Gamma-8 die Kommunikation verstärkt. Durch das Zusammenspiel der Proteine kann eine Synapse ihre Empfindlichkeit auf ein bestimmtes Niveau einpegeln. Dieser Zustand kann Millisekunden bis zu einigen Sekunden andauern, bevor die Empfangsstärke erneut angepasst wird. Fachleute sprechen von „Kurzzeitplastizität“.

„Letztlich beeinflussen diese Moleküle, wie gut die Nervenzelle auf rasch aufeinanderfolgende Signale reagieren kann“, fasst der Wissenschaftler die Befunde zusammen. „Über derlei Dauerfeuer können Netzwerke von Neuronen ihre Aktivität aufeinander abstimmen. Das ist im Gehirn ein ganz normaler Vorgang.“

Empfindliches Gleichgewicht

Zur Überraschung der Forscher zeigte sich, dass die beiden Proteine neben den synaptischen Eigenschaften auch die Gestalt der Nervenzellen mitbestimmen: Fehlen die Helfermoleküle, so haben die Neuronen weniger Fortsätze, mit denen sie mit anderen Nervenzellen in Verbindung treten. „Der Organismus kann mittels CKAMP44 und TARP Gamma-8 neuronale Verbindungen auf mehrfache Weise regulieren“, erklärt von Engelhardt. „Dabei kommt es auf die Balance zwischen beiden Partnern an, da sie teils eine konträre Wirkung haben. Wie die Nervenzellen des Hippokampus auf Signale aus anderen Hirnregionen reagieren, hängt somit stark von dem Vorhandensein und Verhältnis dieser Moleküle ab.“

Da die beiden Moleküle so unmittelbar auf die Struktur und die Funktion der Synapsen der Körnerzellen einwirken, hält es Jakob von Engelhardt für durchaus wahrscheinlich, dass sie einen Einfluss auch auf das Lernen und das Gedächtnis haben.


Originalveröffentlichung
Co-expressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function.
Konstantin Khodosevich, Eric Jacobi, Paul Farrow, Anton Schulmann, Alexandru Rusu, Ling Zhang, Rolf Sprengel, Hannah Monyer, Jakob von Engelhardt. Neuron (2014). doi:10.1016/j.neuron.2014.07.004

Link zum Video-Abstract
http://youtu.be/YHT0a7DEuHs


Kontakt
Dr. Marcus Neitzert
Wissenschaftsredakteur
DZNE
0228/43302-271
marcus.neitzert(at)dzne.de

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
DKFZ, Heidelberg
06221/422854
s.seltmann(at)dkfz.de

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.dzne.de/ueber-uns/presse/meldungen/2014/pressemitteilung-nr-10.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Geckos kommunizieren überraschend flexibel
29.05.2017 | Max-Planck-Institut für Ornithologie

nachricht Bauchspeicheldrüsenkrebs: Forschungsgruppe erprobt erfolgreich neue Diagnose- und Therapieansätze
29.05.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy