Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinpaar bringt Hirnzellen in Form

20.12.2012
Wissenschaftlern des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) in Bonn sind neue Einblicke in die frühe Entwicklungsphase von Hirnzellen gelungen.

Sie konnten in Zusammenarbeit mit Forschern des Max-Planck-Instituts für Neurobiologie in Martinsried, der Universität Bonn und weiteren Kollegen aus dem In- und Ausland zwei Proteine identifizieren, die die Ausbildung von Zellfortsätzen steuern. Aus diesen Auswüchsen gehen schließlich jene typischen Verästelungen hervor, über die Nervenzellen Signale empfangen und weiterleiten.

Die Studie des Teams um Prof. Frank Bradke liefert Hinweise zur Hirnentwicklung und über die Ursachen von Erkrankungen des Nervensystems. Die Ergebnisse sind jetzt in der renommierten Fachzeitschrift „Neuron“ erschienen.

Unter dem Mikroskop zeigt sich das Gehirn als Geflecht von filigraner Schönheit, in dem Milliarden von Nervenzellen – auch „Neurone“ genannt – miteinander vernetzt sind. Dieses Netzwerk betreibt regen Informationsaustausch. Dabei geschieht der Signaltransport von Neuron zu Neuron über feine Verästelungen des Zellkörpers. Diese typische Struktur muss sich allerdings erst ausbilden. „Junge Neurone haben eine eher unauffällige Gestalt. Sie sind rundlich und erinnern an Kirschen“, meint Frank Bradke, Gruppenleiter am DZNE in Bonn. „In diesem Stadium ähnelt die Hirnzelle einer Insel. Sie ist isoliert, ohne direkten Kontakt zu anderen Zellen.“

Noch in der Frühphase ihrer Entwicklung müssen Nervenzellen daher eine Wandlung durchlaufen. Wenig war bislang darüber bekannt, wie die Zellen diesen Vorgang meistern, der für ihre Funktion so entscheidend ist. Denn ein Neuron muss Fortsätze ausbilden, um mit möglichst vielen Nachbarzellen Verbindungen knüpfen zu können. Dafür müssen zunächst sogenannte Neuriten wie winzige Keimlinge aus dem Zellkörper hervorsprießen. Die Studie der Bonner Forscher und ihrer Kollegen wirft neues Licht auf diesen Vorgang.

Dynamisches Duo bearbeitet das Zellkorsett

Durch verschiedene Untersuchungen an Hirnzellen von Mäusen gelang es den Neurowissenschaftlern, die wesentlichen Akteure der Formveränderung auszumachen: das Zellskelett – ein Gerüst aus Eiweißmolekülen, das der Zelle Gestalt und Stabilität verleiht – sowie zwei Proteine mit den Namen „ADF“ und „Cofilin“. „Wir konnten nachweisen, dass diese beiden Proteine auf das Zellgerüst maßgeblich einwirken“, erläutert Dr. Kevin Flynn, Mitarbeiter in Bradkes Arbeitsgruppe und Erstautor der Studie im Magazin „Neuron“. „Wie Scheren durchtrennen sie das Stützkorsett der Zelle an entscheidender Stelle. Durch die Lücke hindurch können sich dann Neuriten entwickeln.“

Dafür gehen diverse Prozesse Hand in Hand: Das Neuron wird in seinem Randbereich insbesondere durch ein Netzwerk fadenförmiger Eiweißmoleküle, die sogenannten Aktin-Filamente, stabilisiert. Die Proteine ADF und Cofilin wirken auf dieses Geflecht, indem sie Aktin-Filamente auflösen und den Abtransport der entstandenen Bruchstücke fördern. Auf diese Weise wird Platz geschaffen für andere Bauteile des Zellskeletts: die „Mikrotubuli“. Sie durchdringen die frei gewordene Lücke und bilden das Rückgrat neuer Zellfortsätze.

Einfluss auf die Hirnentwicklung

Wie entscheidend die beiden Proteine für die Zellentwicklung sind, stellte sich bei Untersuchungen an Mäusen heraus. Die Forscher hatten die Erbanlagen der Tiere so verändert, dass die Herstellung von ADF und Cofilin weitgehend ausblieb. Ergebnis: Die Gehirne neugeborener Tiere waren verkümmert. Eine Analyse ihrer Gehirnzellen ergab, dass sie keine Neuriten entwickelt hatten.

„Unsere Studie zeigt, dass die Proteine ADF und Cofilin und ihr Zusammenspiel mit den Aktin-Filamenten entscheidend sind für die Entwicklung des Gehirns“, sagt Bradke. „Aber auch in anderem Zusammenhang ist die Entstehung von Neuriten bedeutsam. Beispielsweise wenn Nervengewebe sich nach einer Verletzung regeneriert und Verbindungen nachwachsen. Überdies gibt es Erkrankungen und Missbildungen des Nervensystems, die mit verkümmerten Neuriten in Verbindung gebracht werden. Wir verstehen nun besser die molekularen Vorgänge, die hier relevant sind.“

Originalveröffentlichung:
„ADF/cofilin-mediated Actin Retrograde Flow Directs Neurite Formation in the Developing Brain”, Kevin C. Flynn, Farida Hellal, Dorothee Neukirchen, Sonja Jacobs, Sabina Tahirovic, Sebastian Dupraz, Sina Stern, Boyan K. Garvalov, Christine Gurniak, Alisa Shaw, Liane Meyn, Roland Wedlich-Söldner, James R. Bamburg, J. Victor Small, Walter Witke, Frank Bradke, Neuron, Online unter: http://www.cell.com/neuron/abstract/S0896-6273%2812%2900897-5

Pressefoto unter: http://www.dzne.de/ueber-uns/presse/meldungen/2012/pressemitteilung-nr-32.html

Das Deutsche Zentrum für Neurodegenerative Erkrankungen (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist eine Einrichtung in der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Einrichtungen. Kooperationspartner in Bonn sind das Forschungszentrum caesar, die Rheinische Friedrich-Wilhelms-Universität und das Universitätsklinikum Bonn.

Dr. Marcus Neitzert | idw
Weitere Informationen:
http://www.dzne.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte