Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine verändern die Benetzbarkeit von Oberflächen

18.02.2015

An der TU Wien stieß man auf ein Protein, das Oberflächen wasserabweisend oder benetzbar macht.

Wenn man Flüssigkeiten auf eine Oberfläche tropft, zerrinnen sie manchmal zu einem dünnen Film, manchmal ziehen sie sich aber auch zu kleinen, fast runden Tröpfchen zusammen. Ob eine Oberfläche benetzbar oder wasserabweisend ist, hängt maßgeblich von ihren chemischen Eigenschaften ab.


Das Protein EPL1

TU Wien


Schimmelpilze können Substanzen erzeugen, die einen drastischen Einfluss auf die Benetzbarkeit einer Oberfläche haben.

TU Wien

Proteine, die von Schimmelpilzen produziert werden um sich an ihre Umgebungsbedingungen anzupassen, können die Benetzungseigenschaften von Oberflächen drastisch verändern – das wurde in einer Forschungsarbeit herausgefunden, bei der drei verschiedene Chemie-Institute der TU Wien zusammenarbeiteten.

Untersucht wurden zwei verschiedene Gruppen von Proteinen, die sich an der Oberfläche von Flüssigkeiten oder an der Grenze zwischen Feststoff und Flüssigkeit ganz von selbst zu einer Schicht zusammensetzen. Durch interessante Wechselwirkungen zwischen den Proteinen kann man nun Schichten mit besserer Stabilität und bemerkenswerten Benetzungseigenschaften herstellen.

Wasser mit Haut

„Eines der Proteine, die wir untersucht haben, ist EPL1, aus der Familie der Cerato-Platanine. Es wird von Schimmelpilzen in großen Mengen erzeugt. Welche Funktion es genau im Lebenszyklus des Pilzes hat, ist bisher allerdings unbekannt“, sagt Verena Seidl-Seiboth, die Leiterin des Forschungsprojektes. „Uns fiel auf, dass es in einer wässrigen Lösung eine Haut ausbildet – ähnlich wie auf heißer Milch. Und beim Reinigen der Behälter führt das Protein zu einer heftigen Schaumbildung.“ Es war daher naheliegend, sich genauer anzusehen, welchen Einfluss das Protein EPL1 auf Oberflächenspannung von Flüssigkeiten und auf die Benetzbarkeit von Oberflächen hat.

Eine andere Proteinfamilie sind die sogenannten Hydrophobine, die in der Forschungsgruppe von Irina Druzhinina (ebenfalls TU Wien) untersucht werden. Hydrophile Oberflächen lassen sich von Wasser leicht benetzen, hydrophobe Oberflächen (etwa Fette oder Wachse) lassen Wasser abperlen. Hydrophobine bestehen typischerweise aus einem hydrophilen und einem hydrophoben Anteil.

Je nach der Art der Oberfläche docken sie sich mit der hydrophoben oder hydrophilen Seite an die Oberfläche an, die andere Seite der Proteine wendet sich der Flüssigkeit zu. So machen Hydrophobine aus einer wasserabweisenden eine benetzbare Oberfläche und umgekehrt.

Das Protein, das sich nicht benehmen will

Das nun erforschte Protein EPL1 fällt allerdings nicht in diese Kategorie. Es kehrt die Eigenschaften der Oberfläche nicht um – im Gegenteil: Es kann sie sogar verstärken. EPL1 alleine hat den Nachteil, dass es sich sehr schnell wieder von der Oberfläche ablöst, doch mischt man EPL1 mit den bereits bekannten Hydrophobinen, erhält man eine Oberflächenbeschichtung, die die Wirkung von EPL1 mit der Stabilität von herkömmlichen Hydrophobinen verbindet.

Nicht nur als Oberflächenbeschichtung lassen sich die Proteine nutzen. In einer wässrigen Lösung senkt EPL1 die Oberflächenspannung, dadurch lässt dich die Flüssigkeit extrem fein zerstäuben.

„Mögliche Anwendungen für die Veränderung von Oberflächenspannung und Benetzungseigenschaften gibt es viele“, sagt Verena Seidl-Seiboth. „Man könnte Oberflächen herstellen, die nicht nass werden, man könnte Pflanzenschutzmittel dazu bringen, sich feiner zu verteilen, man könnte vielleicht sogar Bio-Putzmittel herstellen.“

Expertise aus verschiedenen Bereichen der Chemie

Möglich wurde die Erforschung von EPL1 an der TU Wien durch eine Zusammenarbeit ganz unterschiedlicher Chemie-Forschungsgruppen. Verena Seidl-Seiboth und Irina Druzhinina gehören zur Forschungsabteilung Biotechnologie und Mikrobiologie am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, und forschen an verschiedensten Aspekten von Schimmelpilzen.

Auch die Bioanalytik spielte in diesem Forschungsprojekt eine große Rolle. Das Team um Günter Allmaier und Gernot Friedbacher vom Institut für Chemische Technologien und Analytik charakterisierte die Proteinschichten mit dem AFM (Atomic Force Microscopy). Die Analyse der Oberflächeneigenschaften wurde in der Gruppe von Hinrich Grothe vom Institut für Materialchemie durchgeführt.

„Es war ein enormer Vorteil in dieser interdisziplinären Zusammenarbeit, die benötigten Expertinnen und Experten aus benachbarten Fachdisziplinen gleich im selben Haus oder nebenan zu haben“ sagt Verena Seidl-Seiboth.

Das Ergebnis dieser erfolgreichen Zusammenarbeit wurde nun im Journal „Soft Matter“ der Royal Society of Chemistry (UK) veröffentlicht.

Rückfragehinweis:
Dr. Verena Seidl-Seiboth
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften
Technische Universität Wien
Gumpendorfer Str. 1a, 1040 Wien
+43-1-58801-166554
verena.seidl@tuwien.ac.at

Weitere Informationen:

http://pubs.rsc.org/en/content/articlelanding/2015/sm/c4sm02389g/unauth#!divAbst... Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Das Geheimnis der Sojabohne: Mainzer Forscher untersuchen Ölkörperchen in Sojabohnen
20.06.2018 | Max-Planck-Institut für Polymerforschung

nachricht Schlüsselmolekül des Alterns entdeckt
20.06.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics