Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine verändern die Benetzbarkeit von Oberflächen

18.02.2015

An der TU Wien stieß man auf ein Protein, das Oberflächen wasserabweisend oder benetzbar macht.

Wenn man Flüssigkeiten auf eine Oberfläche tropft, zerrinnen sie manchmal zu einem dünnen Film, manchmal ziehen sie sich aber auch zu kleinen, fast runden Tröpfchen zusammen. Ob eine Oberfläche benetzbar oder wasserabweisend ist, hängt maßgeblich von ihren chemischen Eigenschaften ab.


Das Protein EPL1

TU Wien


Schimmelpilze können Substanzen erzeugen, die einen drastischen Einfluss auf die Benetzbarkeit einer Oberfläche haben.

TU Wien

Proteine, die von Schimmelpilzen produziert werden um sich an ihre Umgebungsbedingungen anzupassen, können die Benetzungseigenschaften von Oberflächen drastisch verändern – das wurde in einer Forschungsarbeit herausgefunden, bei der drei verschiedene Chemie-Institute der TU Wien zusammenarbeiteten.

Untersucht wurden zwei verschiedene Gruppen von Proteinen, die sich an der Oberfläche von Flüssigkeiten oder an der Grenze zwischen Feststoff und Flüssigkeit ganz von selbst zu einer Schicht zusammensetzen. Durch interessante Wechselwirkungen zwischen den Proteinen kann man nun Schichten mit besserer Stabilität und bemerkenswerten Benetzungseigenschaften herstellen.

Wasser mit Haut

„Eines der Proteine, die wir untersucht haben, ist EPL1, aus der Familie der Cerato-Platanine. Es wird von Schimmelpilzen in großen Mengen erzeugt. Welche Funktion es genau im Lebenszyklus des Pilzes hat, ist bisher allerdings unbekannt“, sagt Verena Seidl-Seiboth, die Leiterin des Forschungsprojektes. „Uns fiel auf, dass es in einer wässrigen Lösung eine Haut ausbildet – ähnlich wie auf heißer Milch. Und beim Reinigen der Behälter führt das Protein zu einer heftigen Schaumbildung.“ Es war daher naheliegend, sich genauer anzusehen, welchen Einfluss das Protein EPL1 auf Oberflächenspannung von Flüssigkeiten und auf die Benetzbarkeit von Oberflächen hat.

Eine andere Proteinfamilie sind die sogenannten Hydrophobine, die in der Forschungsgruppe von Irina Druzhinina (ebenfalls TU Wien) untersucht werden. Hydrophile Oberflächen lassen sich von Wasser leicht benetzen, hydrophobe Oberflächen (etwa Fette oder Wachse) lassen Wasser abperlen. Hydrophobine bestehen typischerweise aus einem hydrophilen und einem hydrophoben Anteil.

Je nach der Art der Oberfläche docken sie sich mit der hydrophoben oder hydrophilen Seite an die Oberfläche an, die andere Seite der Proteine wendet sich der Flüssigkeit zu. So machen Hydrophobine aus einer wasserabweisenden eine benetzbare Oberfläche und umgekehrt.

Das Protein, das sich nicht benehmen will

Das nun erforschte Protein EPL1 fällt allerdings nicht in diese Kategorie. Es kehrt die Eigenschaften der Oberfläche nicht um – im Gegenteil: Es kann sie sogar verstärken. EPL1 alleine hat den Nachteil, dass es sich sehr schnell wieder von der Oberfläche ablöst, doch mischt man EPL1 mit den bereits bekannten Hydrophobinen, erhält man eine Oberflächenbeschichtung, die die Wirkung von EPL1 mit der Stabilität von herkömmlichen Hydrophobinen verbindet.

Nicht nur als Oberflächenbeschichtung lassen sich die Proteine nutzen. In einer wässrigen Lösung senkt EPL1 die Oberflächenspannung, dadurch lässt dich die Flüssigkeit extrem fein zerstäuben.

„Mögliche Anwendungen für die Veränderung von Oberflächenspannung und Benetzungseigenschaften gibt es viele“, sagt Verena Seidl-Seiboth. „Man könnte Oberflächen herstellen, die nicht nass werden, man könnte Pflanzenschutzmittel dazu bringen, sich feiner zu verteilen, man könnte vielleicht sogar Bio-Putzmittel herstellen.“

Expertise aus verschiedenen Bereichen der Chemie

Möglich wurde die Erforschung von EPL1 an der TU Wien durch eine Zusammenarbeit ganz unterschiedlicher Chemie-Forschungsgruppen. Verena Seidl-Seiboth und Irina Druzhinina gehören zur Forschungsabteilung Biotechnologie und Mikrobiologie am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, und forschen an verschiedensten Aspekten von Schimmelpilzen.

Auch die Bioanalytik spielte in diesem Forschungsprojekt eine große Rolle. Das Team um Günter Allmaier und Gernot Friedbacher vom Institut für Chemische Technologien und Analytik charakterisierte die Proteinschichten mit dem AFM (Atomic Force Microscopy). Die Analyse der Oberflächeneigenschaften wurde in der Gruppe von Hinrich Grothe vom Institut für Materialchemie durchgeführt.

„Es war ein enormer Vorteil in dieser interdisziplinären Zusammenarbeit, die benötigten Expertinnen und Experten aus benachbarten Fachdisziplinen gleich im selben Haus oder nebenan zu haben“ sagt Verena Seidl-Seiboth.

Das Ergebnis dieser erfolgreichen Zusammenarbeit wurde nun im Journal „Soft Matter“ der Royal Society of Chemistry (UK) veröffentlicht.

Rückfragehinweis:
Dr. Verena Seidl-Seiboth
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften
Technische Universität Wien
Gumpendorfer Str. 1a, 1040 Wien
+43-1-58801-166554
verena.seidl@tuwien.ac.at

Weitere Informationen:

http://pubs.rsc.org/en/content/articlelanding/2015/sm/c4sm02389g/unauth#!divAbst... Originalpublikation

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit grüner Chemie gegen Malaria
21.02.2018 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Vom künstlichen Hüftgelenk bis zum Fahrradsattel
21.02.2018 | Frankfurt University of Applied Sciences

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics