Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine auf der Streckbank

19.12.2012
Wenn Proteine ihre Faltung verändern, kann dies fatale Folgen haben. In einem europaweiten Forschungsverbund suchen Wissenschaftler nach neuen Methoden, das Verhalten dieser Moleküle vorherzusagen und zu kontrollieren. Mit dabei sind Pharmazeuten der Uni Würzburg.
Alzheimer, Parkinson, die Amyotrophe Lateralsklerose – all diese Krankheiten haben eine gemeinsame Ursache: Falsch gefaltete Proteine ballen sich im Hirn der Betroffenen millionenfach zu unverdaulichen Klumpen zusammen und zerstören die Nervenzellen. Proteine, deren komplizierte dreidimensionale „Verwicklung“ eine falsche Richtung einschlägt, stehen bei vielen weiteren Krankheiten als Auslöser im Verdacht – von Krebs über Diabetes bis zur Arterienverkalkung.

Gefährliche Strukturen

Gefährlich können solch fehlgebildete Strukturen für den Menschen allerdings auch aus einer Ecke werden, in der sie der Laie wohl nicht vermutet hätte – im Gegenteil. „Neue Wirkstoffe in der Medizin können sich im Körper des Patienten ebenfalls falsch falten und gefährliche Nebenwirkungen auslösen bis hin zu beispielsweise einer allergischen Reaktion, die tödlich verlaufen kann“, erklärt Dr. Tessa Lühmann.

Die Biochemikerin ist Wissenschaftliche Mitarbeiterin am Lehrstuhl für Pharmazeutische Technologie und Biopharmazie der Universität Würzburg. In einem neuen, von der EU finanzierten Projekt, will sie in den kommenden drei Jahren Methoden entwickeln, mit denen sich das unerwünschte Verhalten vorhersagen und im Idealfall auch verhindern lässt. Daran beteiligt sind Wissenschaftler aus Zürich, Istanbul und Barcelona und Vertreter der Industrie.

Neue Wirkstoffe gesucht

Antikörper: Mit solchen Proteinen werden sich Tessa Lühmann und ihre Kollegen in den kommenden Jahren beschäftigen. Als Impfstoff oder als Mittel gegen Krebs und Autoimmunerkrankungen finden sie verstärkt in der Medizin Verwendung. Dabei ist es von großer Bedeutung, dass diese Proteine stabil sind und nicht plötzlich ihre Faltung verändern. Das allerdings ist gar nicht so unwahrscheinlich: „Wenn sie beispielsweise beim Spritzen unter hohe Scherkräfte geraten, wenn sich der pH-Wert ihrer Umgebung ändert oder einfach, wenn sie mehrere Jahre lang gelagert werden, kann es passieren, dass sich die Proteine strukturell verändern“, sagt Lühmann. Für den Hersteller solcher Wirkstoffe, der viel Geld in dessen Entwicklung gesteckt hat, sei das „aus unternehmerischer Sicht“ äußerst ärgerlich.

Die Wissenschaftler wollen deshalb eine neue Technik entwickeln, die in sehr kurzer Zeit Aussagen über das Verhalten von Proteinen in speziellen Umgebungen und unter definierten Zuständen ermöglicht. Ihr Ansatz: Sie nehmen ein einzelnes Molekül, befestigen es in einem speziellen Aufbau und ziehen es dann in die Länge. Dabei variieren sie die jeweiligen Umgebungsbedingungen wie Temperatur oder pH-Wert. „Die Kraft, die zum Entfalten nötig ist, erlaubt Rückschlüsse auf die Stabilität dieser Moleküle in ihrer Umgebung“, sagt die Biochemikerin. Die pharmazeutische Industrie erhalte so frühzeitig Aussagen darüber, ob und unter welchen Umständen ein Protein dazu tendiert, eine unerwünschte Form anzunehmen.

Magnetische Nanoröhrchen als Andockstelle

Magnetische Nanoröhrchen sind zentraler Bestandteil der neuen Technik. Nur wenige millionstel Millimeter groß, bieten sie den Proteinknäueln sehr gezielt Andockstellen. Da sie magnetisch sind, können die Wissenschaftler diese Stäbchen in einem Magnetfeld mit hoher Präzision bewegen und in die gewünschte Position manövrieren. Die Spitze eines Rasterkraftmikroskops liefert den zweiten Anknüpfpunkt für das Protein. So an zwei Stellen eingespannt, lässt sich das Protein entfalten und die dafür notwendige Kraft exakt bestimmen.

Für die Produktion der Nanoröhrchen ist die ETH Zürich zuständig; dort kennt man sich aus mit den winzigen Magnet-Stäbchen. Die Messungen selbst finden an der Universität Istanbul statt; dort sitzen die Experten für den technischen Teil der Arbeit. Lühmanns Doktorand Joel Wurzel wird dabei allerdings immer mit vor Ort sein.

Der Würzburger Beitrag

Und Würzburg? „Wir sind die biologisch ausgerichteten pharmazeutischen Technologen in dem Forschungsverbund“, sagt Tessa Lühmann. In den Laborräumen am Hubland werden die jeweiligen Proteine ausgewählt und anschließend mit den Nanoröhrchen verbunden. Die Würzburger Wissenschaftler definieren auch die Bedingungen, unter denen die Messungen stattfinden werden.

Mit 2,7 Millionen Euro finanziert die Europäische Union das Projekt Manaqa – Magnetic Nano Actuators for Quantitative Analysis; 200.000 Euro gehen an die Universität Würzburg. Seine Laufzeit beträgt drei Jahre. „Der Bau der Nanoröhren ist komplex. Bis wir die Proteine ankoppeln können, wird wahrscheinlich ein Jahr vergehen“, sagt Lühmann. Ende 2013 sollen die Messungen beginnen – wenn alles glatt verläuft.

Kontakt

Dr. Tessa Lühmann, T: (0931) 31-82807
E-Mail: t.luehmann@pharmazie.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Arten in der Nordsee-Kita
05.12.2016 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Alter beeinflusst den Mikronährstoffgehalt im Blut
05.12.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz