Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine lichten den Anker: Wie das Schalterprotein Rab aus der Membran gezogen werden

05.08.2013
Proteine lichten den Anker
PNAS: Wie Schalterproteine aus der Membran gezogen werden
Forscher der RUB und vom MPI Dortmund untersuchen kleine GTPasen

Forscher der Ruhr-Universität Bochum und vom MPI Dortmund haben erstmals den Recyclingvorgang von Proteinen, die den Zelltransport regulieren, in einem biophysikalischen Experiment nachgestellt. Dabei verfolgten sie im Detail, wie das zentrale Schalterprotein Rab aus der Lipidmembran herausgezogen wird.


Wenn GDI zupackt: An einer Membranoberfläche sitzt das Rab-Protein (grau und magenta) mit gebundenem GDP (bunt). Der Infrarotstrahl wird von der Oberfläche reflektiert und erlaubt so, die an der Membran stattfindenden Vorgänge zu verfolgen. Das GDI, symbolisiert durch eine Hand, ergreift das Rab-Protein und zieht es aus der Membran. Der zeitliche Verlauf der Infrarotspektren (oben mittig) wird dabei im Spektrometer (oben rechts) aufgelöst.
Grafik: Konstantin Gavriljuk

Die spektroskopischen und dynamischen Daten berichtet das Team um PD Dr. Carsten Kötting, Prof. Dr. Klaus Gerwert (Lehrstuhl für Biophysik, RUB) und Prof. Dr. Roger S. Goody (Max-Planck-Institut für Molekulare Physiologie, Dortmund) in der Online Early Edition der Zeitschrift PNAS. „Zuvor sind Interaktionen dieses Proteins immer nur in Lösung, also ohne eine Lipidmembran untersucht worden. Der Schritt in die natürliche Umgebung des Proteins eröffnet ganz neue Möglichkeiten“, sagt Carsten Kötting. Denn viele krankheitsrelevante Proteininteraktionen finden in der Zelle an einer Membran statt.

Aus der Lösung an die Membran

Anders als Ras-Proteine, die das Zellwachstum regulieren, steuern Rab-GTPasen diverse Transportvorgänge zwischen verschiedenen Bereichen einer Zelle. Die Rab-GTPasen, auch Rab-Proteine genannt, funktionieren genau wie die Ras-Proteine als Schalter. Im „An“-Zustand ist das energiereiche Molekül GTP gebunden, im „Aus“-Zustand das energieärmere GDP. Das Schalterprotein Rab schwimmt nicht einfach mit seinem Transportgut durch die Zelle, sondern ist mit lipidähnlichen Ankern in der Membran befestigt. Nach erfolgtem Transport wird Rab aus der Membran herausgezogen und recycelt. Dieser Vorgang konnte bisher nicht im biophysikalischen Experiment nachgestellt werden. Dem Team aus Bochum und Dortmund ist es gelungen, das Rab-Protein mit dem Membrananker in seiner aktiven Form in großen Mengen herzustellen, an eine künstliche Lipidmembran zu binden und das Herausziehen des Schalterproteins aus der Membran spektroskopisch zu untersuchen.

Zupacken und festziehen

Dazu nutzten die Biophysiker die ATR-Infrarotspektroskopie; mit dieser Methode können sie Vorgänge an Oberflächen wie Lipidmembranen sichtbar machen. Sie schauten besonders auf das Protein GDI, welches das Rab-Protein und seinen Lipidanker bindet. Unklar war, ob Rab sich spontan von der Membran ablöst und GDI es dann abfängt oder ob GDI eine aktive Rolle beim Rab-Recycling einnimmt. Mit der ATR-Spektroskopie konnte das Team erstmals zwischen diesen Vorgängen unterscheiden und eine aktive Rolle für GDI nachweisen. „Wir haben gesehen, dass GDI zur Membran kommt und das Rab-Protein an Ort und Stelle packt“, erklärt Konstantin Gavriljuk. „Dann zieht GDI das Rab viel schneller aus der Membran, als es sich von allein ablösen würde.“

Legionellen greifen in zelluläre Transportprozesse ein

Rab-GTPasen und ihre Interaktionspartner spielen eine Rolle bei diversen Krankheiten, zum Beispiel einigen Formen von geistiger Behinderung oder auch der Legionärskrankheit. Die Erreger der Legionärskrankheit, die Legionellen, attackieren Rab-Proteine, modifizieren sie chemisch und greifen dadurch in zelluläre Transportprozesse ein; das ermöglicht es ihnen, sich in menschlichen Zellen zu vermehren. Die Experimente ergaben, dass die chemische Modifikation durch die Legionellen das Herausziehen von Rab aus der Membran durch GDI behindert. „Wir verstehen nun besser, an welcher Stelle Legionellen die Zelle angreifen und was die Auswirkungen davon sind“, sagt Carsten Kötting.

Projektförderung

Fördermittel für das Projekt stammen vom SFB 642 „GTP- und ATP-abhängige Membranprozesse“, dessen Sprecher Prof. Gerwert ist.

Titelaufnahme

K. Gavriljuk, A. Itzen, R.S. Goody, K. Gerwert, C. Kötting (2013): Membrane extraction of Rab proteins by GDP dissociation inhibitor characterized using attenuated total reflection infrared spectroscopy, PNAS, doi:10.1073/pnas.1307655110

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24461, E-Mail: klaus.gerwert@bph.rub.de

PD Dr. Carsten Kötting, Lehrstuhl Biophysik, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24873, E-Mail: Koetting@bph.rub.de

Angeklickt

Frühere Presseinfo zu Rab
http://aktuell.ruhr-uni-bochum.de/pm2012/pm00416.html.de
Redaktion: Dr. Julia Weiler

Jens Wylkop | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten