Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteinbinder geben neue Einblicke in Krankheiten

26.09.2011
Der Rolle von Proteinen bei der Entstehung von Krankheiten und Schmerzen sind Forscher der Universität Kassel auf der Spur. Das genaue Verständnis der Wirkmechanismen dieser Eiweißverbindungen gilt als Schlüssel für künftige Bekämpfungsstrategien.

Die Medizin von morgen soll Krankheiten früher und gezielter bekämpfen oder sogar bereits deren Ausbruch vermeiden können. Auf dem Weg dorthin nehmen Proteine eine Schlüsselstellung ein, wobei jede menschliche Zelle aus einem fein abgestimmten Orchester an unterschiedlichsten Proteinen besteht. Dabei ist einerseits wichtig, welche Proteine dies sind, und zum anderen, wie viele Proteine einer Spezies vorhanden sind, da die Proteinzusammensetzung letztlich für die Funktion entscheidend ist.


Schmerz und Krankheit auf der Spur: Um die beteiligten Proteine zu identifizieren und untersuchen zu können, charakterisieren Kasseler Forscher designte Binder von der Universität Zürich (Prof. Dr. Andreas Plückthun) auf ihre Interaktion mit Proteinen. So sieht eine Kristallstruktur von einem Protein (großes, buntes Molekül) und ein dazu generierter, designter Binder (klein, rot, links unten) aus. Bildquelle: Urheber PDB: 3NOG

Wissenschaftler der Universität Kassel analysieren im Rahmen mehrerer Forschungsprojekte das Bindungsverhalten dieser wohl wichtigsten Bausteine des menschlichen Organismus. Diese Forschung ist die Grundlage für die Entwicklung neuer Medikamente, das Aufspüren von Schmerzschaltern in Nervenzellen, den gezielten Einsatz von Arzneimitteln und ein besseres Verständnis der Ursache von Krankheiten wie z.B. Parkinson oder Alzheimer.

Warum empfindet ein Mensch stärkere Schmerzen als andere? Wieso gibt es Schmerzen, die scheinbar keine körperliche Ursache haben? Warum helfen bestimmte Medikamente gegen einen Tumor bei dem einen Patienten gut, bei einem anderen aber weniger? Antworten darauf könnte das Netzwerk der schätzungsweise 100.000 verschiedenen Proteine, also Eiweißverbindungen, liefern. Ihr Zusammenspiel in den Zellen und ihre Wechselwirkung untereinander steuern jeden unserer Sinne, jede Funktion, also unseren gesamten Organismus. Bei vielen Krankheiten kann die heutige Medizin nur die Symptome behandeln, sagt Dr. Daniela Bertinetti, wissenschaftliche Mitarbeiterin an dem von Prof. Dr. Friedrich W. Herberg geleiteten Fachgebiet Biochemie der Universität Kassel. Man vermutet, dass eine Reihe von fehlerhaften Proteinen für die Auslösung von Krankheiten verantwortlich sei. „Die Analyse der Proteine hilft uns, besser zu verstehen, wie wir funktionieren“, erklärt die Wissenschaftlerin.

Doch um bestimmte Proteine in einer Gewebeprobe aufzuspüren, ihr Mengenverhältnis zueinander zu bestimmen und die Interaktion der Biomoleküle darzustellen, bedarf es spezieller Binder: Diese maßgeschneiderten Proteine werden im Reagenzglas mit speziellen Bindemotiven versehen, um an diejenigen Proteine im menschlichen Körper andocken zu können, die detektiert werden sollen. Die Wissenschaftler des Fachbereichs Biochemie sind darauf spezialisiert, solche designten Binder herzustellen und ihr Bindeverhalten bis ins Detail zu analysieren. Dabei geht es vor allem darum, den einen Binder mit maßgeschneiderten Eigenschaften aus Tausenden von hergestellten Bindern herauszufiltern. Denn ein Binder taugt nur dann als Werkzeug, wenn z.B. seine Bindung an ein Protein über eine gewisse Zeitdauer hält. Für die Analyse der Bindungseigenschaften von Biomolekülen haben die Kasseler Forscher mehrere methodische Verfahren entwickelt. „Wir haben einen ganzen Zoo von unterschiedlichen Methoden zur Analyse von Bindungen. Unsere Expertise in den so genannten Biomolekularen Interaktionsanalysen ist sowohl national als auch international ausgewiesen“, sagt Dr. Bertinetti.

Beispielsweise nutzen die Wissenschaftler das physikalische Prinzip der Oberflächenplasmon Resonanz (SPR) um das Binde- und Abstoßungsverhalten von Biomolekülen zu messen. Für manche Fragestellungen braucht man allerdings eine Messmethode in lebenden Zellen, da nutzen die Kasseler Wissenschaftler den so genannten BRET (Biolumineszenz-Resonanz-Energie-Transfer) Assay.

Außerdem entwickeln die Kasseler Biochemiker in Zusammenarbeit mit Forschern aus ganz Europa und der Unterstützung von Professor Dr. Hartmut Hillmer vom Institut für Nanostrukturtechnologie und Analytik (INA) der Universität Kassel im Rahmen von CINSaT ein „Lab on a chip“ Verfahren, den so genannten DNA array to protein array (DAPA). Mit diesem Verfahren könnte man die Bindung von tausenden Proteinen an maßgeschneiderte Binder im Labor schnell, einfach und kostengünstig charakterisieren.

Um zu gezielteren Behandlungsmethoden zu kommen, müssen zunächst die Gesamtheit der menschlichen Proteine, ihr Mengenverhältnis in der Zelle und ihre Wechselwirkung charakterisiert werden. Einen Beitrag dazu leisten die Kasseler Wissenschaftler seit 2010 in dem mit 11 Millionen Euro dotierten, noch bis Ende 2014 laufenden EU-Projekt „Affinomics“, in dem 15 europäische Forschungseinrichtungen zusammenarbeiten. 400.000 Euro Forschungsgelder fließen dafür nach Kassel. Schon bei dem - mit 3 Millionen Euro dotierten - Vorläufer-Projekt „Affinity Proteome“ waren das Fachgebiet und das am Standort ansässige Biotech Unternehmen Biaffin GmbH & Co KG dabei.

Bei der Forschung nach der Ursache von Schmerzen arbeiten die Kasseler Wissenschaftler im Rahmen des vom Bundsministerium für Bildung und Forschung mit zwei Millionen Euro geförderten Projektes „Modellierung von peripheren Schmerzschaltern“ mit acht Forschungseinrichtungen und einem mittelständischen Unternehmen interdisziplinär zusammen. Bioinformatiker, Kliniker und Biochemiker untersuchen dabei die Struktur der Signale, mit denen Proteine die Informationen in den Nervenzellen transportieren, die schließlich das Phänomen Schmerz auslösen. Die bisherigen Ergebnisse belegen, dass die Schmerzweiterleitung deutlich komplexer ist, als zu Beginn des Projektes angenommen. Trotzdem konnten in diesem Projekt Signalwege aufgeklärt werden, die Hinweise darauf geben, wie man die Weitergabe von Schmerzimpulsen an bestimmten Stellen pharmakologisch unterbrechen kann.

Info Dr. Daniela Bertinetti / Prof. Dr. Friedrich W. Herberg
Universität Kassel
Fachbereich 10 - Mathematik und Naturwissenschaften
Abteilung Biochemie
Heinrich-Plett-Str. 40
Tel.: 0561/804-4229
E-Mail: d.bertinetti@uni-kassel.de

Dr. Guido Rijkhoek | idw
Weitere Informationen:
http://www.biologie@uni-kassel.de/biochemistry

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Genetische Vielfalt schützt vor Krankheiten
23.05.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt
22.05.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rotierende Rugbybälle unter den massereichsten Galaxien

23.05.2018 | Physik Astronomie

Invasive Quallen: Strömungen als Ausbreitungsmotor

23.05.2018 | Ökologie Umwelt- Naturschutz

Matrix-Theorie als Ursprung von Raumzeit und Kosmologie

23.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics