Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich die Protein-Transportmaschinerie in den Chloroplasten höherer Pflanzen entwickelte

10.01.2013
Auf halbem Weg zwischen Bakterium und Baum
Moos Physcomitrella patens ist eine evolutionäre Zwischenstufe

RUB-Forscher haben gemeinsam mit Kollegen aus Schweden untersucht, wie sich das Proteintransportsystem von Bakterien im Lauf der Zeit zu dem System in den Chloroplasten höherer Pflanzen entwickelte. Sie erforschten die sogenannten Signalerkennungspartikel (SRP) und ihre Rezeptoren.


Petrischale mit einer Gametophyten-Kultur von Physcomitrella patens: Gezeigt sind Gametophyten, welche neben den Sporophyten eine von zwei Generationen im Generationswechsel des Mooses repräsentieren.
Foto: Chantal Träger

Bioinformatische und biochemische Analysen ergaben, dass das Moos Physcomitrella patens evolutionär alte und neue Bestandteile des SRP-Systems besitzt und damit eine Zwischenstufe in der Entwicklung von bakteriellem Transportsystem zum Chloroplasten-System in höheren Pflanzen darstellt. Das internationale Team um Prof. Dr. Danja Schünemann und Dr. Chantal Träger aus der AG Molekularbiologie pflanzlicher Organellen der Ruhr-Universität berichtet in der Zeitschrift The Plant Cell.

Das SRP-System leitet neue Proteine an ihren Arbeitsort

In der Zellflüssigkeit befördert eine spezielle Transportmaschinerie Proteine von ihrem Entstehungsort an ihren Arbeitsort, zum Beispiel in die Zellmembran. Entscheidend dabei ist das sogenannte SRP-System. Es bindet an das zu transportierende Protein, wandert mit ihm zur Zellmembran und interagiert dort mit dem SRP-Rezeptor (FtsY). Bindet das SRP-System an den Rezeptor, kommt es durch Spaltung des Energiespeichermoleküls GTP zu weiteren Prozessen, die schließlich das Protein in der Membran verankern.

Vom Cyanobakterium zum Chloroplasten

In der Zellflüssigkeit von Bakterien, Tieren und Pflanzen besteht das SRP-System aus zwei Komponenten: dem Protein SRP54 und der Ribonukleinsäure SRP-RNA. Vor einigen Jahren fanden Forscher heraus, dass die Chloroplasten höherer Pflanzen, also die Photosynthese-treibenden Zellbestandteile, ein eigenes SRP-System besitzen. Es unterscheidet sich stark von dem System der Zellflüssigkeit. Denn es besitzt keine SRP-RNA, sondern neben dem SRP54 zusätzlich das Protein SRP43, das ausschließlich in Chloroplasten vorkommt. Wissenschaftler nehmen an, dass Chloroplasten aus Cyanobakterien entstanden, die zunächst in Symbiose mit pflanzlichen Vorläuferzellen lebten und schließlich in die Pflanzenzellen integriert wurden. Wie das RNA-lose SRP-System der Chloroplasten aus dem RNA-haltigen SRP-System der Bakterien entstand, haben die Wissenschaftler nun erforscht.

Pflanzenreich bioinformatisch durchsucht

Die Bochumer Biologen und Dr. Magnus Rosenblad von der Universität Göteborg schauten zunächst mit Hilfe der Bioinformatik, welche Vertreter im Pflanzenreich welche Komponenten des SRP-Systems in ihren Chloroplasten aufweisen. „Wir waren erstaunt, dass viele Organismen von einzelligen Grünalgen über Moose bis hin zu Farnen das Gen für die SRP-RNA in ihren Chloroplasten besitzen“, sagt Danja Schünemann. „Die einzige Ausnahme sind die höheren Pflanzen, die dieses Gen verloren haben.“ Bei ihnen besteht das SRP-System einzig und allein aus den Proteinen SRP54 und SRP43. Interessanterweise kommt SRP43 aber auch in den Chloroplasten der niederen Pflanzen vor, die noch mit SRP-RNA ausgestattet sind.

SRP-RNA im Moos hat ihre Funktion teilweise eingebüßt

In Zusammenarbeit mit mehreren Gruppen des SFB 642 an der RUB untersuchte Dr. Chantal Träger die Biochemie des Mooses Physcomitrella patens, das zu den niederen Pflanzen zählt. Physcomitrella besitzt in den Chloroplasten alle denkbaren Komponenten des SRP-Systems: sowohl die evolutionär alten Komponenten SRP54 und SRP-RNA, als auch das evolutionär neuere Protein SRP43. Die SRP-RNA der Moos-Chloroplasten bildet jedoch eine längere Schlaufe als die bakterielle SRP-RNA. Diese veränderte Struktur behindert sie scheinbar darin, die Spaltung von GTP zu regulieren. Physcomitrella patens enthält also die evolutionär alte SRP-RNA, die aber bestimmte Funktionen weitgehend verloren hat. Das SRP-System der Chloroplasten von Physcomitrella patens repräsentiert also den Übergang zwischen Bakterien und höheren Pflanzen. Eine Röntgenstrukturanalyse ergab des Weiteren, dass der SRP-Rezeptor (FtsY) des Mooses bereits Eigenschaften des Proteins bei höheren Pflanzen aufweist.

Titelaufnahme

C. Träger, M.A. Rosenblad, D. Ziehe, C. Garcia-Petit, L. Schrader, K. Kock, C.V. Richter, B. Klinkert , F. Narberhaus, C. Herrmann, E. Hofmann, H. Aronsson, D. Schünemann (2012): Evolution from the prokaryotic to the higher plant chloroplast Signal Recognition Particle: the Signal Recognition Particle RNA is conserved in plastids of a wide range of photosynthetic organisms, The Plant Cell, DOI: 10.1105/tpc.112.102996

Weitere Informationen

Prof. Dr. Danja Schünemann, AG Molekularbiologie pflanzlicher Organellen, Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24293, E-Mail: danja.schuenemann@rub.de

Dr. Chantal Träger, AG Molekularbiologie pflanzlicher Organellen, Ruhr-Universität, 44780 Bochum, Tel. 0234/32-29341, E-Mail: chantal.traeger@rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences