Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein- statt Gentransfer: – neuer Ansatz für Impfstoffe?

25.06.2015

Forschern des Paul-Ehrlich-Instituts ist es in Kooperation mit Wissenschaftlern aus Hannover gelungen, mithilfe eines neuartigen lentiviralen Vektors Proteine (statt Gene) gezielt in ausgewählte Immunzellen zu übertragen. So konnten die Wissenschaftler spezifisch Immuneffektorzellen (CD8-positive T-Zellen) auf die Erkennung bestimmter Antigene ausrichten und scharf schalten. Diese Methode könnte zur Bekämpfung von Tumorzellen genutzt werden. Der neue Ansatz, Proteine statt Gene zu transferieren, hat den Vorteil, dass Immunzellen ohne genetische Modifikation spezifisch aktiviert werden. Über die Forschungsergebnisse berichtete das Journal of Virology in seiner Online-Ausgabe vom 17.06.2015.

Lentivirale Vektoren sind modifizierte Viruspartikel, die dazu genutzt werden, genetisches Material in Zellen zu schleusen, um so beispielsweise erblich bedingte Krankheiten und Krebs zu behandeln. Ein Problem dabei: Mit Gentransfervektoren übertragene therapeutische Gene rufen unter Umständen unerwünschte Mutationen im Erbgut der Zielzellen hervor. Diese können ein erster Schritt zu einer krebsartigen Entartung der genetisch modifizierten Zellen sein.


Lentiviraler Proteintransfervektor (elektronenmikroskop. Aufnahme).

Quelle: PEI

Dieses Risiko haben jetzt Forscher des Paul-Ehrlich-Instituts (PEI) um Dr. Michael Mühlebach, Leiter des Fachgebiets „Produktprüfung immunologischer Tierarzneimittel“ der Abteilung Veterinärmedizin des Paul-Ehrlich-Instituts, in Zusammenarbeit mit weiteren Forschungsgruppen im PEI sowie in Kooperation mit Wissenschaftlern aus Hannover umgangen:

An Stelle von therapeutischen Genen, die erst in der Zielzelle in Proteine übersetzt werden, transferierten die Forscher mittels neuer lentiviraler Vektorpartikel direkt Proteine. Die übertragenen Proteine waren in diesem Fall Antigene (bestimmte immunologisch relevante Proteine) zur Aktivierung von Immunzellen. Die Idee dahinter: Die Aufnahme, Verarbeitung und Präsentation der Antigene aktiviert das Immunsystem zur Erkennung und Abtötung von (Tumor-)Zellen, die dieses Antigen tragen.

Um die Proteine in die gewünschten Immunzellen zu transferieren, bauten die Forscher lentivirale Vektoren so um, dass sie gezielt nur solche Zellen ansteuern, die den sogenannten SLAM-Rezeptor tragen (SLAM steht für signaling lymphocyte activation molecule). SLAM befindet sich auf stimulierten Lymphozyten und antigenpräsentierenden Zellen.

Die Forscher konnten nachweisen, dass die gewünschten Proteine in die Vektorpartikel aufgenommen wurden und die Vektorpartikel tatsächlich gezielt Zellen ansteuerten, die SLAM tragen. Auch konnten sie zeigen, dass die Proteine in die Zielzellen übertragen wurden. Transferierten die Forscher mit ihren Proteintransfer-Vektoren gezielt Antigene in Immunzellen, aktivierten diese wiederum CD8-positive T-Zellen. Spezifisch aktivierte T-Zellen können antigentragenden Tumorzellen abtöten. Somit könnte dieses neue Verfahren, mit lentiviralen Vektoren gezielt Proteine in Immunzellen zu übertragen, geeignet sein, als (Tumor-)Impfstoff eingesetzt zu werden.

Um die Wirksamkeit ihrer Methode zu überprüfen, behandelten die Wissenschaftler Mäuse mit dem potenziellen Impfstoff. Die Mäuse entwickelten eine starke Immunantwort, wie sie nach einer Impfung gewünscht wird. „Die Induktion der antigenspezifischen CD8-positiven T-Zellen ist eine Eigenschaft, die insbesondere in der Immuntherapie von Krebserkrankungen, aber auch von bestimmten Infektionskrankheiten oder Allergien erwünscht wird. Die starke Immunantwort lässt vermuten, dass die Methode wirksam zur Bekämpfung antigentragender Krebszellen eingesetzt werden könnte", erläutert Mühlebach

Originalpublikation: Uhlig KM, Schülke S, Scheuplein VA, Malczyk AH, Reusch J, Kugelmann S, Muth A, Koch V, Hutzler S, Bodmer BS, Schambach A, Buchholz CJ, Waibler Z, Scheurer S, Mühlebach MD : Lentiviral protein transfer vectors are an efficient vaccine-platform inducing strong antigen-specific cytotoxic T cell response. J Virol. 2015 Jun 17. pii: JVI.00844-15
doi: 10.1128/JVI.00844-15


Das Paul-Ehrlich-Institut in Langen bei Frankfurt am Main ist als Bundesinstitut für Impfstoffe und biomedizinische Arzneimittel eine Bundesoberbehörde im Geschäftsbereich des Bundesministeriums für Gesundheit (BMG). Es erforscht, bewertet und lässt biomedizinische Human-Arzneimittel und Veterinär-Impfstoffe zu und ist für die Genehmigung klinischer Prüfungen sowie die Pharmakovigilanz – Erfassung und Bewertung möglicher Nebenwirkungen – zuständig. Die staatliche Chargenprüfung, wissenschaftliche Beratung/Scientific Advice und Inspektionen gehören zu den weiteren Aufgaben des Instituts. Unverzichtbare Basis für die vielseitigen Aufgaben ist die eigene experimentelle Forschung auf dem Gebiet der Biomedizin und der Lebenswissenschaften. Das Paul-Ehrlich-Institut mit seinen rund 800 Mitarbeiterinnen und Mitarbeitern nimmt zudem Beratungsfunktionen in nationalem (Bundesregierung, Länder) und internationalem Umfeld (Weltgesundheitsorganisation, Europäische Arzneimittelbehörde, Europäische Kommission, Europarat und andere) wahr.

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/?term=Lentiviral+protein+transfer+vectors+are... - Abstract der Publikation
http://www.pei.de/DE/infos/presse/pressemitteilungen/2015/09-protein-statt-gentr... - Diese Pressemitteilung auf den Internetseiten des PEI

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik