Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein-Origami: Schneller falten ist besser

31.01.2013
Die Entwicklungsgeschichte der Proteine zeigt, dass Proteinfaltung ein wichtiger evolutionärer Faktor ist. Vor allem die Faltungsgeschwindigkeit spielt dabei eine große Rolle.
Das ergab eine Computeranalyse von Forschern des Heidelberger Instituts für Theoretische Studien (HITS) und der University of Illinois at Urbana-Champaign: Seit fast vier Milliarden Jahren gibt es einen Trend zur schnelleren Faltung. „Der Grund dafür könnte sein, dass die Proteine dadurch weniger anfällig für Verklumpungen sind und ihre Aufgaben früher ausführen können“, sagt Dr. Frauke Gräter (HITS), die die Analyse leitete. Die Ergebnisse wurden jetzt in PLoS Computational Biology publiziert.

Proteine sind elementare Bausteine des Lebens. Sie erfüllen oft lebenswichtige Funktionen. Damit sie aktiv werden können, müssen sich Proteine in dreidimensionale Strukturen falten. Fehlfaltung von Proteinen führt zu Krankheiten wie Alzheimer oder Creutzfeldt-Jakob. Welche Strategien hat die Natur im Laufe der Evolution entwickelt, um die Faltung von Proteinen zu verbessern?
Um dieser Frage nachzugehen, warf die Chemikerin Dr. Frauke Gräter (Heidelberger Institut für Theoretische Studien) einen Blick weit zurück in die Erdgeschichte. Gemeinsam mit ihrem Kollegen Prof. Gustavo Caetano-Anollés von der University of Illinois at Urbana-Champaign untersuchte sie in einer Computeranalyse die Faltungsgeschwindigkeit aller heute bekannter Proteine, die vor bis zu 3,8 Milliarden Jahren entstanden sind. Die Forscher beobachteten dabei einen Trend: Die Geschwindigkeit nahm über einen Großteil des Zeitraums zu, von den Urbakterien bis hin zu den Mehrzellern. Als vor 1,5 Milliarden Jahren komplexere Strukturen auftauchten und einen biologischen „Urknall“ verursachten, entstanden zwar auch Proteinstrukturen, die langsamer falteten. Aber die Tendenz zu mehr Tempo im Protein-Origami ist dominierend, unabhängig von der Länge der Aminosäureketten, die die Proteine bildeten.

Heute finden sich in der Natur zahlreiche Formen unterschiedlicher Proteinfaltungen. Die meisten dieser Formen haben sich seit dem biologischen „Urknall“ vor 1,5 Millarden Jahren entwickelt. Einen wichtigen Faktor für die Diversifizierung stellte dabei das Faltungstempo dar, wie die Studie herausfand.
Bild: Cedric Debes / HITS

„Der Grund für die schnellere Faltung könnte darin liegen, dass die Proteine dadurch weniger anfällig für Verklumpungen sind und ihre Aufgaben früher ausführen können“, sagt Frauke Gräter, Leiterin der HITS-Forschungsgruppe „Molecular Biomechanics“.

Genetik und Biophysik für große Datenmengen

In ihrer Arbeit setzten die Wissenschaftler auf einen interdisziplinären Ansatz, der Genetik mit Biophysik verbindet. „Es ist die erste Analyse, die alle bekannten Proteinstrukturen und Genome mit Faltungsraten als einer physikalischen Größe verbunden hat“, so Frauke Gräter.
92.000 Proteine und 989 Genome enthalten viele Daten, die nur mit rechnerischen Methoden zu bewältigen sind. Gustavo Caetano-Anollés, der in Urbana-Champaign das „Evolutionary Bioinformatics Laboratory“ leitet, klassifizierte alle strukturell bekannten Proteine aus der Protein Database (PDB) nach ihrem Alter. Er spürte Proteinsequenzen in den Genomen auf, die die gleiche Faltung haben wie die einzelnen Proteine, und glich sie miteinander auf einer Zeitskala ab. So kann man erkennen, ab wann welche Proteine zu welchem Organismus gehörten.

Danach fütterte Gräters Mitarbeiter Cedric Debes den Computer mit diesen Daten und erstellte ein mathematisches Modell, um die Faltungsrate der Proteine vorherzusagen. Die einzelnen Schritte der Faltung spielen sich in unterschiedlichen Geschwindigkeiten von Nanosekunden bis hin zu Minuten ab - Zeitunterschiede, die kein Mikroskop oder Laser für so viele Proteine beobachten kann. Auch eine Computersimulation, die alle Faltungen in allen Proteinen berechnet, würde Jahrhunderte Rechenzeit auf einem Großrechner benötigen. Die Forscher arbeiteten deshalb mit einer weniger datenintensive Methode: Die Faltungsgeschwindigkeit der einzelnen Proteine wurde auf der Basis zuvor experimentell ermittelter Strukturen berechnet: Ein Protein faltet immer an den gleichen Punkten. Wenn diese Punkte weit auseinander liegen, braucht es dafür mehr Zeit, als wenn die Punkte nah beisammen sind. Mit der sogenannten „Size-Modified Contact Order“ (SMCO) kann man vorhersagen, wie schnell sich die Punkte zusammenfinden und wie schnell dadurch das Protein faltet, unabhängig von der Länge des Proteins.

„Unsere Ergebnisse zeigen, dass es am Anfang Proteine gab, die nicht besonders gut falten konnten“, resümiert Frauke Gräter. „Die Natur verbesserte im Laufe der Zeit die Proteinfaltung, so dass schließlich komplexere Strukturen wie der Mensch entstehen konnten.“

Schneller und kürzer – im Dienst der Evolution

Auch die Aminosäureketten, die für die Bildung der Proteine verantwortlich sind, verkürzten sich im Laufe der Evolution. Dieser Faktor trug zusätzlich dazu bei, das Tempo der Faltung zu steigern , wie die Studie zeigt.

„Seit es Eukaryoten, also Lebewesen mit Zellkern gibt, steht die Proteinfaltung nicht mehr so sehr im Vordergrund“, sagt Frauke Gräter. Denn die Natur entwickelte seitdem eine komplexe Maschinerie, die missgefaltete Proteine wieder repariert, wie die sogenannten Chaperone. „Es scheint, als ob die Natur eine gewisse Unordnung in Kauf nimmt, um Strukturen zu entwickeln, die sonst nicht entstehen könnten.“

Die Zahl der bekannten Genome und Proteinstrukturen steigt stetig an und vergrößert damit die Datenbasis für weitere Computeranalysen zur Evolution der Proteine. Frauke Gräter: „In künftigen Analysen der Proteinevolution können wir damit vielleicht auch die Frage leichter beantworten, ob Proteine stabiler oder flexibler wurden über die Milliarden Jahre ihrer Entwicklung hinweg.“

Wissenschaftliche Publikation:
Debès C, Wang M, Caetano-Anollés G, Gräter F (2013) Evolutionary Optimization of Protein Folding. PLoS Comput Biol 9(1): e1002861. doi:10.1371/journal.pcbi.1002861
URL: http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002861

Pressekontakt:
Dr. Peter Saueressig
Presse- und Öffentlichkeitsarbeit
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-245
Fax: +49-6221-533-298
peter.saueressig@h-its.org
http://www.h-its.org

Wissenschaftlicher Kontakt:
Dr. Frauke Gräter
Molecular Biomechanics group
HITS Heidelberger Institut für Theoretische Studien
Tel: +49-6221-533-267
Fax: +49-6221-533-298
frauke.graeter@h-its.org
http://www.h-its.org

HITS
Das Heidelberger Institut für Theoretische Studien wurde von SAP-Mitbegründer Klaus Tschira ins Leben gerufen und ist eine private, gemeinnützige Forschungseinrichtung. Als Forschungsinstitut der Klaus Tschira Stiftung betreibt das HITS in verschiedenen Bereichen der Naturwissenschaften, Mathematik und Informatik Grundlagenforschung zur Verarbeitung und Strukturierung großer Datenmengen. Der Sitz des Instituts befindet sich auf dem Campusgelände Schloss-Wolfsbrunnenweg 35.

Dr. Peter Saueressig | idw
Weitere Informationen:
http://www.h-its.org
http://www.h-its.org/deutsch/presse/pressemitteilungen.php?we_objectID=950
http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002861

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit Barcodes der Zellentwicklung auf der Spur
17.08.2017 | Deutsches Krebsforschungszentrum

nachricht Magenkrebs: Auch Bakterien können Auslöser sein
17.08.2017 | Charité – Universitätsmedizin Berlin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten