Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein Engineering: In fünf Schritten zur zielgenauen Therapie

08.02.2017

Wie Wissenschaftler es schaffen, dass Medikamente genau da wirken, wo sie wirken sollen.

Wissenschaftler, die an neuen Medikamenten forschen, haben ein klares Ziel vor Augen: Sie wollen Therapien entwickeln, die den Verlauf von Erkrankungen beim Menschen positiv beeinflussen können. Das Ergebnis kann ein Arzneimittel sein, das die Symptome einer Erkrankung lindert, ihr Fortschreiten stoppt oder sogar zur vollständigen Heilung führt. Im Idealfall wirken diese Medikamente gezielt nur dort, wo sie gebraucht werden, um die Nebenwirkungen auf ein Minimum zu reduzieren.


Protein Engineering

AbbVie


Beim Protein-Engineering entwickeln Forscher individualisierte Therapien gegen schwere Erkrankungen.

AbbVie

Krankheiten zielgerichtet bekämpfen

Im Bereich „Protein-Engineering“ suchen Wissenschaftler nach Medikamenten, die Krankheiten äußerst zielgerichtet bekämpfen. Dazu entwerfen sie Proteine – etwa Antikörper oder Enzyme – mit neuen Eigenschaften und Funktionen, die in die Krankheitsabläufe eingreifen können.

Proteine sind Eiweißmoleküle, die vom Körper gebildet werden und dort vielfältige Aufgaben erfüllen. Enzyme zerlegen zum Beispiel Nahrungsbestandteile wie Fette und Zucker oder machen Giftstoffe wie Alkohol unschädlich. Antikörper binden hochspezifisch Krankheitserreger und sorgen für deren Vernichtung durch das Immunsystem.

Diese Eigenschaften macht man sich beim Protein-Engineering zunutze. Das Ziel: Proteine zu entwerfen oder so zu verändern, damit deren Eigenschaften gegen bestimmte Zielstrukturen, sogenannte „Targets“, der Krankheit genutzt werden können, um so den Krankheitsverlauf positiv zu verändern.

Ein Target kann beispielsweise auf der Oberfläche einer Krebszelle sitzen oder als Botenstoff im Körper Entzündungsreaktionen hervorrufen und durch das richtige therapeutische Protein direkt unschädlich gemacht oder zur Zerstörung markiert werden.

Was heißt es, ein Protein zu „entwerfen“ und wie funktioniert das?

Fünf einfache Schritte zeigen den Weg zur Entwicklung von therapeutischen Proteinen und wie Protein-Engineering funktioniert.

SCHRITT 1: Targets identifizieren

Das Protein-Engineering-Team arbeitet eng mit Krankheitsexperten und Medizinern zusammen, um die Entstehung und den Verlauf einer Erkrankung zu verstehen und Targets zu identifizieren, die sich als Angriffspunkt für neuartige Medikamente eignen. Daraus entsteht die Idee für ein mögliches Protein-Design. Dazu analysieren die Forscher das Target genau, um herauszufinden, wie sie den Bauplan des Proteins verändern müssen, damit es mit dem Target interagieren und sich so positiv auf die Krankheitsabläufe im Körper auswirken kann.

SCHRITT 2: Das Design

Mit diesem Wissen beginnen die Wissenschaftler mit dem Design. Dabei versuchen sie, Proteine ausfindig zu machen, zu entwickeln oder zu verändern, die in der Lage sind, an das Target zu binden, um es zu hemmen, zu aktivieren oder zu zerstören.

SCHRITT 3: Die Interaktion

Je nachdem, welche Eigenschaften das Target aufweist, müssen die Wissenschaftler einen geeigneten Ansatz finden, damit das entworfene Protein daran binden oder damit interagieren kann. Dabei stehen ihnen verschiedene Möglichkeiten zur Verfügung. Zum Beispiel:

• Antikörper-Wirkstoff-Konjugat:
Ein Antikörper, also ein Protein, kann so verändert werden, dass er gezielt an das Target bindet. Verknüpft man den Antikörper mit einem weiteren Medikament, transportiert er dieses präzise zu dem Ort, an dem es wirken soll. Das kann beispielsweise eine Krebszelle sein, die sich so gezielt zerstören lässt, ohne das umliegende Gewebe zu schädigen.

• Bispezifische Antikörper:
Bindet ein Antikörper gleich an zwei unterschiedliche Targets, bezeichnet man ihn als bispezifischen Antikörper. Durch das Binden mehrerer Targets ergeben sich vielfältige Optionen, um in den Krankheitsverlauf einzugreifen.

SCHRITT 4: Analyse

Haben die Wissenschaftler geeignete Protein-Designs identifiziert, führen sie daraufhin eingehende Untersuchungen und Experimente durch, um mehr über die Proteine zu erfahren, die sie entworfen und hergestellt haben. Ziel ist es, ein Protein zu identifizieren, das über alle wichtigen Eigenschaften verfügt, die für die gewünschte krankheitsmodifizierende Wirkung beim Menschen erforderlich sind. Sind die Wissenschaftler erfolgreich, beginnen umfangreiche Tests, um die Sicherheit des potenziellen neuen Arzneimittels zu prüfen, bevor es beim Menschen eingesetzt werden darf.

SCHRITT 5: Wirksamkeit und Sicherheit testen

Sobald das Protein alle erforderlichen Tests erfolgreich durchlaufen hat, wird mit sogenannten klinischen Studien begonnen. Hier wird nicht nur geprüft, ob das Protein als Medikament auch wirkungsvoll und verträglich ist, sondern auch in welcher Darreichungsform und Dosis es zukünftig beim Menschen eingesetzt werden sollte. Diese Studien sind in drei Phasen aufgeteilt und dauern mehrere Jahre. Sind sie erfolgreich, erhält das Medikament die Marktzulassung und kann fortan verschrieben werden.

Weitere Informationen:

http://bit.ly/2ljFcH5 - Video zum Thema Protein Engineering
http://bit.ly/2ljDhCf - Neuigkeiten von AbbVie Deutschland

Andrea Arnold | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Up-Scaling: Katalysatorentwicklung im Industriemaßstab
22.11.2017 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

nachricht Ozeanversauerung schädigt Miesmuscheln im Frühstadium
22.11.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften