Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein-Baupläne für Nanoysteme

16.04.2015

Wissenschaftler entwickeln Verfahren zur Herstellung biobasierter Materialien mit neuen Eigenschaften

Die Freiburger Forscher Dr. Andreas Schreiber und Dr. Matthias Huber haben gemeinsam mit ihrem Arbeitsgruppenleiter Dr. Stefan Schiller sowie Kollegen der Universität Konstanz das Konzept der Protein-Adaptor-basierten-Nano-Objekt-Anordnung (PABNOA) entwickelt. PABNOA erlaubt es, mithilfe von ringförmigen Proteinen Goldnanopartikel zu verschiedenen Strukturen anzuordnen, wobei der Abstand zwischen diesen Partikeln exakt definiert ist.


Quelle: Stefan Schiller

Dadurch lassen sich biobasierte Materialien mit neuen optischen und plasmonischen Eigenschaften herstellen. Die Nanoplasmonik beschäftigt sich mit kleinsten elektromagnetischen Wellen, die von Metallpartikeln ausgehen, wenn diese mit Licht interagieren.

Nach dem gleichen Prinzip wie diese Materialien könnten auch Nanosysteme, die Licht in elektrische Energie umwandeln, sowie biobasierte Materialien mit neuen magnetischen Eigenschaften entwickelt werden. Das Team hat die Ergebnisse im Fachjournal „Nature Communications“ veröffentlicht.

Die Gruppe um Schiller nutzt maßgeschneiderte Proteine als Bausteine, um aus ihnen Nanosysteme mit neuen physikalischen, chemischen und biologischen Eigenschaften aufzubauen. Die nachhaltige und ressourcenschonende Herstellung dieser Proteine erfolgt beispielsweise im natürlichen Energie- und Stoffkreislauf von Zellen.

Zu diesem Zweck forscht der Arbeitskreis daran, beispielsweise Bakterien mit zusätzlichen Elementen auszustatten – etwa mit Enzymen, Transportern, Schaltern und Organellen, den Organen der Zelle. Diese Elemente sollen es in Zukunft erlauben, das Funktionsspektrum der so Zelle zu erweitern, dass diese die gewünschten Nanosysteme nachhaltig und ressourcenschonend herstellen kann.

Nach dem gleichen Prinzip soll es ebenfalls möglich sein, Basisrohstoffe für die chemische Industrie herzustellen. „Solche Verfahren sind unverzichtbar für eine erfolgreiche Umwandlung unserer Ökonomie in eine nachhaltige und resiliente Bioökonomie“, sagt Schiller.

Stefan Schiller ist Arbeitsgruppenleiter am Zentrum für Biosystemanalyse (ZBSA) und Mitglied im Exzellenzcluster BIOSS Biological Signalling Studies der Universität Freiburg. Die Ergebnisse entstanden in Zusammenarbeit mit der Universität Konstanz. Die Baden-Württemberg Stiftung im unterstützt das Projekt im Kompetenznetz „Funktionelle Nanostrukturen“.

Originalveröffentlichung:
Andreas Schreiber, Matthias C. Huber, Helmut Cölfen & Stefan M. Schiller: Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures. Nature Communications 6, Article number: 6705 (2015).
doi:10.1038/ncomms7705
www.nature.com/ncomms/2015/150327/ncomms7705/metrics

Kontakt:
Dr. Stefan Schiller
Zentrum für Biosystemanalyse
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-97405
E-Mail: stefan.schiller@frias.uni-freiburg.de

Weitere Informationen:

http://www.pr.uni-freiburg.de/pm/2015/pm.2015-04-16.58

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten