Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein balance key in preventing cancer

28.02.2013
Fox Chase researchers find that two antagonistic proteins help keep leukemia at bay, pointing to new potential treatments

Two proteins that scientists once thought carried out the same functions are actually antagonists of each other, and keeping them in balance is key to preventing diseases such as cancer, according to new findings published in the February 25 issue of Developmental Cell by scientists at Fox Chase Cancer Center. The results suggest that new compounds could fight cancer by targeting the pathways responsible for maintaining the proper balance between the proteins.

"It's our job now to understand how we can intervene therapeutically in this system, so we can restore balance when it's thrown off," says study author David L. Wiest, PhD, professor and deputy chief scientific officer at Fox Chase.

The two proteins—"Rpl22" and "Rpl22-like1", which contribute to the process by which additional cellular proteins are made—are created from two similar genes, leading researchers to previously believe they were performing identical functions in the body. "What we're finding is that is absolutely not true," says Wiest. "Not only are they performing different functions, they are antagonizing each other."

During the study, Wiest and his team knocked out Rpl22 in zebrafish—a common model of human disease. Without Rpl22, the zebrafish don't develop a type of T cells (a blood cell) that helps fight infections. The same developmental defect was observed when they knocked out Rpl22-like1, indicating that both proteins are independently required to enable stem cells to give rise to T cells.

But when the researchers tried to restore T cells in zebrafish that lacked Rpl22 by adding back Rpl22-like1, it didn't work. The reverse was also true—Rpl22 was not enough to restore function after the researchers eliminated Rpl22-like1. These results led Wiest and his team to believe that, although the proteins are both involved in producing stem cells, they do not perform the same function.

To learn more about the proteins' individual functions, the researchers looked at the levels of different proteins involved in stem cell production when either Rpl22 or Rpl22-like1 was absent. Without Rpl22-like1, cells had lower levels of a protein known as Smad1—a critical driver of stem cell development. And when Rpl22 disappeared, levels of Smad1 increased dramatically.

Both proteins can bind directly to the cellular RNA from which Smad1 is produced, suggesting that they maintain balance in stem cell production via their antagonistic effects on Smad1 expression, explains Wiest.

"I like to think of Rpl22 as a brake, and Rpl22-like1 as a gas pedal – in order to drive stem cell production, both have to be employed properly. If one or the other is too high, this upsets the balance of forces that regulate stem cell production, with potentially deadly effects," says Wiest.

Specifically, too much Rpl22 (the "brake"), and stem cell production shuts off, decreasing the number of blood cells and leading to problems such as anemia. Too much Rpl22-like1 (the "gas pedal"), on the other hand, can create an over-production of stem cells, leading to leukemia.

Previous research has found that Rpl22-like1 is often elevated in cancer, including 80% of cases of acute myeloid leukemia (AML). Conversely, researchers have found that in other cancers, the gene that encodes Rpl22 is deleted. "Either one of these events is sufficient to alter the balance in stem cell production in a way that pushes towards cancer," says Wiest.

Co-authors on the study include Yong Zhang, Anne-Cécile E. Duc, Shuyun Rao, Xiao-Li Sun, Alison N. Bilbee, Michele Rhodes, Qin Li, Dietmar J. Kappes, and Jennifer Rhodes of Fox Chase.

Fox Chase Cancer Center, part of Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase also was among the first institutions to receive the National Cancer Institute's prestigious comprehensive cancer center designation in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are routinely recognized in national rankings, and the Center's nursing program has achieved Magnet status for excellence three consecutive times. Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research and oversees programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE (1-888-369-2427) or visit www.foxchase.org.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Nobel Prize Protein Rpl22-like1 T cells blood cell cellular protein stem cells

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik