Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein balance key in preventing cancer

28.02.2013
Fox Chase researchers find that two antagonistic proteins help keep leukemia at bay, pointing to new potential treatments

Two proteins that scientists once thought carried out the same functions are actually antagonists of each other, and keeping them in balance is key to preventing diseases such as cancer, according to new findings published in the February 25 issue of Developmental Cell by scientists at Fox Chase Cancer Center. The results suggest that new compounds could fight cancer by targeting the pathways responsible for maintaining the proper balance between the proteins.

"It's our job now to understand how we can intervene therapeutically in this system, so we can restore balance when it's thrown off," says study author David L. Wiest, PhD, professor and deputy chief scientific officer at Fox Chase.

The two proteins—"Rpl22" and "Rpl22-like1", which contribute to the process by which additional cellular proteins are made—are created from two similar genes, leading researchers to previously believe they were performing identical functions in the body. "What we're finding is that is absolutely not true," says Wiest. "Not only are they performing different functions, they are antagonizing each other."

During the study, Wiest and his team knocked out Rpl22 in zebrafish—a common model of human disease. Without Rpl22, the zebrafish don't develop a type of T cells (a blood cell) that helps fight infections. The same developmental defect was observed when they knocked out Rpl22-like1, indicating that both proteins are independently required to enable stem cells to give rise to T cells.

But when the researchers tried to restore T cells in zebrafish that lacked Rpl22 by adding back Rpl22-like1, it didn't work. The reverse was also true—Rpl22 was not enough to restore function after the researchers eliminated Rpl22-like1. These results led Wiest and his team to believe that, although the proteins are both involved in producing stem cells, they do not perform the same function.

To learn more about the proteins' individual functions, the researchers looked at the levels of different proteins involved in stem cell production when either Rpl22 or Rpl22-like1 was absent. Without Rpl22-like1, cells had lower levels of a protein known as Smad1—a critical driver of stem cell development. And when Rpl22 disappeared, levels of Smad1 increased dramatically.

Both proteins can bind directly to the cellular RNA from which Smad1 is produced, suggesting that they maintain balance in stem cell production via their antagonistic effects on Smad1 expression, explains Wiest.

"I like to think of Rpl22 as a brake, and Rpl22-like1 as a gas pedal – in order to drive stem cell production, both have to be employed properly. If one or the other is too high, this upsets the balance of forces that regulate stem cell production, with potentially deadly effects," says Wiest.

Specifically, too much Rpl22 (the "brake"), and stem cell production shuts off, decreasing the number of blood cells and leading to problems such as anemia. Too much Rpl22-like1 (the "gas pedal"), on the other hand, can create an over-production of stem cells, leading to leukemia.

Previous research has found that Rpl22-like1 is often elevated in cancer, including 80% of cases of acute myeloid leukemia (AML). Conversely, researchers have found that in other cancers, the gene that encodes Rpl22 is deleted. "Either one of these events is sufficient to alter the balance in stem cell production in a way that pushes towards cancer," says Wiest.

Co-authors on the study include Yong Zhang, Anne-Cécile E. Duc, Shuyun Rao, Xiao-Li Sun, Alison N. Bilbee, Michele Rhodes, Qin Li, Dietmar J. Kappes, and Jennifer Rhodes of Fox Chase.

Fox Chase Cancer Center, part of Temple University Health System, is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase also was among the first institutions to receive the National Cancer Institute's prestigious comprehensive cancer center designation in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are routinely recognized in national rankings, and the Center's nursing program has achieved Magnet status for excellence three consecutive times. Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research and oversees programs in cancer prevention, detection, survivorship, and community outreach. For more information, call 1-888-FOX-CHASE (1-888-369-2427) or visit www.foxchase.org.

Diana Quattrone | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Nobel Prize Protein Rpl22-like1 T cells blood cell cellular protein stem cells

More articles from Life Sciences:

nachricht Heidelberg Researchers Find Unusually Elastic Protein
23.01.2015 | Ruprecht-Karls-Universität Heidelberg

nachricht Early human ancestors used their hands like modern humans
23.01.2015 | Max Planck Institute for Evolutionary Anthropology, Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

eLearning Africa 2015

23.01.2015 | Veranstaltungen

Industrie 4.0-Forum zur intelligenten Produktion der Zukunft

22.01.2015 | Veranstaltungen

Mehr als 300 Teilnehmer auf dem Batterieforum Deutschland 2015 in Berlin

21.01.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Druckfrisch – Der neue Nachhaltigkeitsbericht von Baufritz ist da

23.01.2015 | Unternehmensmeldung

All in One – Sechs Funktionen in einer Textilbeschichtung

23.01.2015 | Verfahrenstechnologie

Hohe Anforderungen an elektrischer Maschinen

23.01.2015 | Seminare Workshops