Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Projektstart ECO COM'BAT: Nachhaltige Energiespeicherung mit leistungsstarken Hochvoltbatterien

07.03.2017

Für die schnelle Umsetzung der Elektromobilität in Europa ist die Reichweite eine der größten Herausforderungen. Im europäischen Projekt ECO COM'BAT entwickeln deshalb unter der Koordination der Fraunhofer-Projektgruppe für Wertstoffkreisläufe und Ressourcenstrategie IWKS des Fraunhofer-Instituts für Silicatforschung ISC zehn Partner aus Industrie und Forschung die nächste Generation der Lithium-Ionen-Batterien – die Hochvoltbatterie. Die Hochvoltbatterie soll nicht nur leistungsfähiger, sondern auch in Bezug auf die verwendeten Materialien durch den Ersatz von bisher teuren, seltenen oder gar kritischen Materialien nachhaltiger als herkömmliche Batterien des gleichen Typs sein.

Wegen ihrer hohen Energiedichte und Zuverlässigkeit sind Lithium-Ionen-Batterien aktuell die bevorzugte Energiequelle für elektromobile Fahrzeuge und Konsumergeräte. Doch mit der wachsenden Anzahl an Elektrofahrzeugen und den technologisch immer komplexeren mobilen Endgeräten sind auch die Ansprüche gestiegen. Größere Sicherheit, längere Lebensdauer, höhere Energiedichte und Leistung sowie größere Reichweite sind gefordert.


Effiziente Lithium-Ionen-Pouchzelle und ihre Ausgangsmaterialien.

© K. Selsam-Geißler, Fraunhofer ISC

Ziel des Projekts ECO COM'BAT (»Ecological Composites for High-Efficient Li-Ion Batteries«) ist die Herstellung einer innovativen Hochvoltbatterie, die u. a. die Reichweite von Elektrofahrzeugen erhöht, ein schnelles Laden von Geräten erlaubt und dabei stabiler, leichter und langlebiger sein soll. Darüber hinaus sollen kritische oder wertvolle Rohstoffe, die üblicherweise in herkömmlichen Lithium-Ionen-Batterien verwendet werden, ersetzt werden.

Upscaling im Produktionsmaßstab

Um all dies zu erreichen, verwenden die Projektpartner innovative Materialien: kobaltarmes Lithium-Nickel- Mangan-Kobalt-Oxid – sogenanntes NMC – dient als aktives Material der Elektrode und liefert die erforderliche hohe Energiedichte bei rund 20 Prozent weniger Kobalt als üblich. Als Leitadditiv dient eine Kombination aus Carbon-Nanotubes und porösem Kohlenstoff. Sie verbessert die elektrische Leitfähigkeit der Elektroden und ermöglicht hohe Energiedichten.

Als Elektrolyt wird ein spezieller Hochvoltelektrolyt basierend auf dem Leitsalz Lithium-Bis(fluorosulfonyl)imide (LiFSI) eingesetzt, der auch bei hohen Spannungen stabil betrieben werden kann. Eine ionenleitfähige Beschichtung aus besonderen Hybridpolymeren schützt die Elektrolytmaterialien und sorgt für hohe Sicherheit, Zuverlässigkeit und lange Lebensdauer der Batterie.

Eine erste Aufgabe des Projekts ECO COM'BAT ist die Hochskalierung der Produktionsprozesse, um die innovativen Batteriematerialien im großen Maßstab herstellen zu können. Im nächsten Schritt wird dann die eigentliche Zellproduktion für den industrienahen Pilotmaßstab bis hin zum Produktionsmaßstab hochskaliert. Dabei werden automobile Standardanforderungen ebenso wie energie- und kostengünstige Produktionsmethoden berücksichtigt.

Effizientes, schonendes Recyclingverfahren

Mit der weiteren Verbreitung von Elektrofahrzeugen werden zukünftig auch sehr viel mehr Altbatterien anfallen. Um problematischen Müll zu vermeiden und v. a. die wertvollen Batteriematerialien wie Graphit, Kobalt und Lithium zurückzugewinnen, müssen neue Wege für ein effizientes Recycling gefunden werden. Um eine bestmögliche Wiederverwertung von Rohstoffen und Batteriematerialien zu erreichen, wird bereits bei der Herstellung der Prototypen auf ein recyclinggerechtes Design geachtet. Außerdem sollen innovative Recyclingverfahren erprobt werden.

Projektpartner und Förderung

Das Projekt ECO COM'BAT wird vom Konsortium EIT RawMaterials des Europäischen Instituts for Innovation und Technologie EIT finanziert. EIT RawMaterials, gefördert von der Europäischen Kommission, ist das weltweit größte und stärkste Konsortium im Rohstoffsektor. Seine Vision ist eine Europäische Union, in der Rohstoffe eine große Stärke sind. Aufgabe des Konsortiums ist es, die Wettbewerbsfähigkeit, das Wachstum und die Attraktivität des europäischen Rohstoffsektors durch radikale Innovation und unternehmerische Initiative zu stärken.

Die innovativen Materialien der Hochvoltbatterie liefern insbesondere die Industriepartner Arkema aus Frankreich sowie Umicore aus Belgien und im Fall der Schutzbeschichtung das Fraunhofer ISC. Arkema und das Fraunhofer ISC skalieren die Materialien für den Pilotmaßstab auf, die Elektroden und Zellen fertigen das französische Energieforschungsinstitut CEA, der deutsche Hersteller Custom Cells Itzehoe und das Fraunhofer F&E-Zentrum Elektromobilität Bayern, Teil des ISC, nach Vorgaben des französischen Batterieherstellers Saft.

Die Analyse und Charakterisierung der Materialien, Komponenten und Zellen übernehmen die TU Darmstadt, das spanische Forschungsinsitut CSIC, das italienische Forschungsinstitut ENEA, das Fraunhofer ISC und dessen Projektgruppe IWKS. Die Betriebssimulation führt das flämische Forschungsinstitut VITO durch. Tests zu neuen Recyclingverfahren werden von der Fraunhofer-Projektgruppe IWKS geleitet.

Weitere Informationen:

http://www.isc.fraunhofer.de
http://www.iwks.fraunhofer.de
http://www.eitrawmaterials.eu

Marie-Luise Righi | Fraunhofer-Institut für Silicatforschung ISC

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics