Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Projekt PREDICT: Auf dem Weg zur vorhersagbaren Krebstherapie

15.01.2013
Schneller zu hochwirksamen Medikamenten

Krebsmedikamente auf der Basis von Proteinwirkstoffen gelten als vielversprechender Weg zur Bekämpfung bösartiger Erkrankungen. Doch ihre Entwicklung dauert oft viele Jahre, ist kostenintensiv, und wie das Medikament am Ende tatsächlich anschlägt, ist erst nach umfangreichen klinischen Tests abschätzbar.


Tumorwachstumssimulation basierend auf einem Mehrskalenansatz in einem experimentell gewonnenen Blutgefäße-Netzwerk.

Tumorwachstumssimulation basierend auf einem Mehrskalenansatz in einem experimentell gewonnenen Blutgefäße-Netzwerk.

Wissenschaftler des Zentrums für Systembiologie der Universität Stuttgart und weitere Partner erarbeiten in einem vom Bundesministerium für Bildung und Forschung (BMBF) mit insgesamt 3,5 Millionen Euro (Anteil Uni Stuttgart 2,3 Millionen) geförderten Verbundforschungsprojekt ein ganzheitliches mathematisches Modell, mit dem sich die Wirkung von Krebsmedikamenten besser vorhersagen und der Entwicklungsprozess beschleunigen lässt.

An dem Projekt mit dem Namen „PREDICT“ sind acht Arbeitsgruppen aus vier Instituten der Universität Stuttgart, die Universität Tübingen, die Robert Bosch Gesellschaft für Medizinische Forschungsowie die Industrieunternehmen Bayer Tech-nology Services und Celonic beteiligt.

Wer neue, hochwirksame Medikamente für die Therapie komplexer, zur Zeit nicht oder nur ungenügend behandelbarer Erkrankungen entwickeln will, muss die verschiedensten Prozesse ganzheitlich verstehen. Diese reichen von den genetischen Grundlagen über den molekularen Ablauf zellulärer Reaktionen und die (Fehl)funktion der beteiligten Organsysteme bis hin zur Reaktion des gesamten Körpers. Das gilt gerade auch bei immuntherapeutischen Ansätzen, also der Behandlung mit Antikör-pern und davon abgeleiteten Proteinen, die sich insbesondere bei einigen Blutkrebsformen als sehr wirksam herausgestellt haben. Beim Design solcher Wirkstoffe sind neben der bestmöglichen Wirkung insbesondere die pharmakologischen Eigenschaften zu berücksichtigen, um ein optimales therapeutisches Ergebnis zu erzielen, gleichzeitig jedoch unerwünschte Nebenwirkungen zu minimieren.
PREDICT, das auf dreijährigen, ebenfalls vom BMBF geförderten Vorarbeiten des Zentrums für Systembiologie und seiner Partner aufbaut, will am Beispiel protein-basierter Krebsmedikamente experimentelle Forschung und mathematische Modellierung vereinen. Ziel ist es, ein ganzheitliches Modell zu erstellen, das die tumor-spezifische Wirkung dieser Therapeutika vorhersagen kann. Das mathematische Modell berücksichtigt nicht nur die Biologie des Tumors und sein Wachstumsverhalten, sondern beschreibt auch die Verteilung des Wirkstoffs im Körper und seine Anreicherung im Tumorgewebe sowie dessen molekularen Wirkmechanismus an der Tumorzelle, was letztendlich im Idealfall die Zerstörung des gesamten Tumor zur Folge haben soll. In einem iterativen Prozess werden experimentelle Daten zur Validierung und Optimierung des Modells herangezogen, im Gegenzug können Vorhersagen des Modells experimentell überprüft werden. Daraus entsteht ein Multiskalen-Modell, das alle Ebenen vom Molekül über Zellen und Gewebe bis zu den Organen und dem ganzen Körper umfasst. Es soll einen Vergleich mit etablierten Therapieverfahren und eine Vorhersage des therapeutischen Potentials der neuen Wirkstoffe erlauben und so letztlich dazu beitragen, die klinische Prüfung dieser neuen Medikamenten-Klasse und die Entwicklung neuer Therapieverfahren in der Onkologie zu beschleunigen.

In dem Projekt werden neuartige, vom Institut für Zellbiologie und Immunologie der Universität Stuttgart entwickelte tumorspezifische biologische Wirkstoffe eingesetzt, die zielgerichtet in Tumorzellen die so genannte Apoptose, den programmierten Zelltod, auslösen und so den Tumor insgesamt zerstören.

Ihre Ansprechpartner:

Prof. Dr. Klaus Pfizenmaier (Koordinator), Universität Stuttgart,
Institut für Zellbiologie und Immunologie (IZI), Tel.0711/685-66986,
E-Mail: klaus.pfizenmaier (at) izi.uni-stuttgart.de
Beate Witteler-Neul, Universität Stuttgart, Zentrum Systembiologie (CSB),
Tel. 0711/685-69926
E-Mail: witteler(at)zsb.uni-stuttgart.de

Andrea Mayer-Grenu, Universität Stuttgart,
Abt. Hochschulkommunikation,
Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu@hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen