Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Programmierung von Zellen - Auf die Hülle kommt es an

31.01.2013
Von den Sehzellen nachtaktiver Tiere zu grundlegenden Einsichten in die DNA-Organisation: LMU-Wissenschaftler zeigen in einer neuen Studie, wie die Zellkernhülle über die Zellarchitektur entscheidet - und so auch die Genregulation beeinflusst.

Das fadenförmige Erbmolekül DNA liegt im Zellkern als dicht gepackter DNA-Protein-Komplex vor, der Chromatin genannt wird. Dabei sind aktive DNA-Abschnitte - das Euchromatin - weniger eng gepackt und besser zugänglich als inaktive.

Euchromatin befindet sich typischerweise in den inneren Bereichen des Zellkerns, während ein erheblicher Teil der inaktiven DNA-Bereiche - das Heterochromatin - an der Peripherie des Zellkerns liegt. Diese Art der Chromatin-Organisation hat sich im Lauf der letzten 500 Millionen Jahre bei fast allen höheren Organismen etabliert.

Mit einer Ausnahme: In den Sehzellen nachtaktiver Tiere ist das Heterochromatin in der Mitte des Zellkerns lokalisiert, wie die LMU-Biologen Dr. Boris Joffe und Dr. Irina Solovei bereits in einer früheren Studie zeigen konnten. „Uns interessierten nun die Mechanismen der Chromatinverteilung: Wie wird die Zellkernarchitektur in den Stäbchenzellen nachtaktiver Tiere quasi auf den Kopf gestellt und was sorgt in normalen Zellen dafür, dass stillgelegtes Chromatin am Zellkernrand positioniert wird?“, sagt Professor Heinrich Leonhardt vom Biozentrum der LMU, der diesen Fragen mit seinem Team in einer umfangreichen Studie auf den Grund ging.

Grundlegendes Prinzip entdeckt

Mit gezielten genetischen Veränderungen bei der Maus konnten Solovei und Joffe mit ihren Kollegen nun zum ersten Mal zeigen, dass es zwei unabhängige Mechanismen gibt, mit denen das Heterochromatin an die Zellkernhülle geheftet wird. Dabei fungieren zwei sehr unterschiedliche Komponenten der Hülle als Heterochromatin-fixierende Klammern: Einerseits das Strukturprotein Lamin A/C, und andererseits der Lamin-B-Rezeptor LBR.

Normalerweise kommen beide Komponenten nacheinander zum Einsatz: „Im Lauf der Zellreifung wird von LBR zu Lamin A/C umgeschaltet, d.h. es ist immer mindestens eine Klammer vorhanden, mit der Heterochromatin an den Zellkernrand geheftet wird. Nur wenn beide fehlen, zieht sich das stillgelegte Heterochromatin wie ein losgelassenes Gummiband in der Mitte des Zellkerns zusammen“, so Leonhardt. Dabei scheint es sich um ein grundlegendes Prinzip bei der Entwicklung und Reifung bei Säugerzellen zu handeln, wie die Wissenschaftler durch Untersuchungen an insgesamt 39 Säugetierarten und die Analyse zahlreicher Gewebe aus neun Mausmodellen nachweisen konnten.

Chance auf gezielte Behandlung genetischer Krankheiten

Lamine haben nicht nur eine strukturelle Funktion, sondern sie beeinflussen auch die Genregulation. LBR steuert das Stammzellprogramm vor der Geburt und begünstigt das Ablesen von Genen, die für sich schnell teilende Stammzellen wichtig sind. Lamin A/C dagegen kodiert eine strukturelle Komponente der Zellkernhülle und reguliert in Muskelzellen die Expression von muskelzellspezifischen Genen. Mutationen im Lamin A/C Gen führen zu sogenannten Laminopathien, dies sind seltene genetische Erkrankungen mit einem weiten Spektrum klinischer Symptome, darunter Progerie (vorzeitiges Altern) und fortschreitende Muskelschwäche.

Die Wissenschaftler vermuten nun, dass Lamin A/C-Mutationen das Ablesen spezifischer Gene bei der Zellreifung beeinträchtigen und damit die Funktionstüchtigkeit dieser Gewebe einschränken. Damit haben sie möglicherweise eine Erklärung für die sehr komplexen Symptome bei Patienten mit Mutationen im Lamin A/C Gen gefunden, die die Chance eröffnet, gezieltere Behandlungs-Ansätze für Laminopathien zu entwickeln.

Mit ihren Ergebnissen gewannen die Wissenschaftler somit grundlegend neue Einsichten, wie die unterschiedlichen Zellen unseres Körpers jeweils den für sie wichtigen Teil der gesamten Erbinformation ablesen. „Letztlich sind wir von der Nachtsichtigkeit und einer kuriosen Laune der Natur zu fundamentalen regulatorischen Mechanismen gelangt: Die Zellkernhülle entscheidet mit, und daher macht es einen großen Unterschied, in welcher Hülle unser Erbgut steckt“, schließt Leonhardt. (göd)

Publikation:
LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation
Irina Solovei, Audrey S. Wang, Katharina Thanisch, Christine S. Schmidt, Stefan Krebs, Monika Zwerger, Tatiana V. Cohen, Didier Devys, Roland Foisner, Leo Peichl, Harald Herrmann, Helmut Blum, Dieter Engelkamp, Colin L. Stewart, Heinrich Leonhardt, and Boris Joffe
Cell, 31.1.2013
http://dx.doi.org/10.1016/j.cell.2013.01.009
Kontakt:
Professor Dr. Heinrich Leonhardt
Department Biologie II
Tel. +49 (0)89 2180-74232
Fax +49 (0)89 2180-74236
E-Mail: h.leonhardt@lmu.de
http://www.bioimaging.bio.lmu.de/personen/professoren/leonhardt/index.html

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt
16.10.2017 | Leibniz-Institut für Neurobiologie

nachricht Keimfreie Bruteier: Neue Alternative zum gängigen Formaldehyd
16.10.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Kalte Moleküle auf Kollisionskurs

Mit einer neuen Kühlmethode gelingt Wissenschaftlern am MPQ die Beobachtung von Stößen in einem dichten Strahl aus kalten und langsamen dipolaren Molekülen.

Wie verlaufen chemische Reaktionen bei extrem tiefen Temperaturen? Um diese Frage zu beantworten, benötigt man molekulare Proben, die gleichzeitig kalt, dicht...

Im Focus: Astronomen entdecken ungewöhnliche spindelförmige Galaxien

Galaxien als majestätische, rotierende Sternscheiben? Nicht bei den spindelförmigen Galaxien, die von Athanasia Tsatsi (Max-Planck-Institut für Astronomie) und ihren Kollegen untersucht wurden. Mit Hilfe der CALIFA-Umfrage fanden die Astronomen heraus, dass diese schlanken Galaxien, die sich um ihre Längsachse drehen, weitaus häufiger sind als bisher angenommen. Mit den neuen Daten konnten die Astronomen außerdem ein Modell dafür entwickeln, wie die spindelförmigen Galaxien aus einer speziellen Art von Verschmelzung zweier Spiralgalaxien entstehen. Die Ergebnisse wurden in der Zeitschrift Astronomy & Astrophysics veröffentlicht.

Wenn die meisten Menschen an Galaxien denken, dürften sie an majestätische Spiralgalaxien wie die unserer Heimatgalaxie denken, der Milchstraße: Milliarden von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

bionection 2017 erstmals in Thüringen: Biotech-Spitzenforschung trifft in Jena auf Weltmarktführer

13.10.2017 | Veranstaltungen

Tagung „Energieeffiziente Abluftreinigung“ zeigt, wie man durch Luftreinhaltemaßnahmen profitieren kann

13.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

16.10.2017 | Physik Astronomie

Was läuft schief beim Noonan-Syndrom? – Grundlagen der neuronalen Fehlfunktion entdeckt

16.10.2017 | Biowissenschaften Chemie

Gewebe mit Hilfe von Stammzellen regenerieren

16.10.2017 | Förderungen Preise